Deep Learning for Electromyographic Hand Gesture Signal Classification Using Transfer Learning

计算机科学 手势 学习迁移 人工智能 深度学习 线性判别分析 光谱图 手势识别 机器学习 原始数据 信号(编程语言) 模式识别(心理学) 模态(人机交互) 模式 语音识别 程序设计语言 社会学 社会科学
作者
Ulysse Côté‐Allard,Cheikh Latyr Fall,Alexandre Drouin,Alexandre Campeau-Lecours,Clément Gosselin,Kyrre Glette,François Laviolette,B Gosselin
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:27 (4): 760-771 被引量:459
标识
DOI:10.1109/tnsre.2019.2896269
摘要

In recent years, deep learning algorithms have become increasingly more prominent for their unparalleled ability to automatically learn discriminant features from large amounts of data. However, within the field of electromyography-based gesture recognition, deep learning algorithms are seldom employed as they require an unreasonable amount of effort from a single person, to generate tens of thousands of examples. This paper's hypothesis is that general, informative features can be learned from the large amounts of data generated by aggregating the signals of multiple users, thus reducing the recording burden while enhancing gesture recognition. Consequently, this paper proposes applying transfer learning on aggregated data from multiple users while leveraging the capacity of deep learning algorithms to learn discriminant features from large datasets. Two datasets comprised 19 and 17 able-bodied participants, respectively (the first one is employed for pre-training), were recorded for this work, using the Myo armband. A third Myo armband dataset was taken from the NinaPro database and is comprised ten able-bodied participants. Three different deep learning networks employing three different modalities as input (raw EMG, spectrograms, and continuous wavelet transform (CWT)) are tested on the second and third dataset. The proposed transfer learning scheme is shown to systematically and significantly enhance the performance for all three networks on the two datasets, achieving an offline accuracy of 98.31% for 7 gestures over 17 participants for the CWT-based ConvNet and 68.98% for 18 gestures over 10 participants for the raw EMG-based ConvNet. Finally, a use-case study employing eight able-bodied participants suggests that real-time feedback allows users to adapt their muscle activation strategy which reduces the degradation in accuracy normally experienced over time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助简晴采纳,获得10
1秒前
潇洒的小鸽子完成签到 ,获得积分10
1秒前
2秒前
妞妞月完成签到 ,获得积分10
2秒前
共享精神应助凛雪鸦采纳,获得10
4秒前
4秒前
4秒前
4秒前
噜噜噜完成签到,获得积分10
5秒前
搜集达人应助宋十一采纳,获得10
5秒前
panxf发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
赘婿应助同力力力采纳,获得10
7秒前
调研昵称发布了新的文献求助10
9秒前
sail完成签到,获得积分10
9秒前
10秒前
烟花应助11采纳,获得10
10秒前
11秒前
不配.应助guoguo采纳,获得20
12秒前
12秒前
辉@应助大胖胖胖er采纳,获得10
13秒前
zxj发布了新的文献求助10
13秒前
16秒前
16秒前
Lou完成签到,获得积分10
18秒前
柯ke完成签到,获得积分10
18秒前
rosalieshi应助cnspower采纳,获得200
18秒前
19秒前
努力向前冲完成签到 ,获得积分10
19秒前
飞子笑完成签到,获得积分10
21秒前
JUGG发布了新的文献求助10
21秒前
T_MC郭完成签到,获得积分10
23秒前
浅尝离白应助Omni采纳,获得10
24秒前
杜好好完成签到,获得积分10
24秒前
Ava应助小可爱采纳,获得10
24秒前
美满的红酒完成签到 ,获得积分10
24秒前
25秒前
25秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138230
求助须知:如何正确求助?哪些是违规求助? 2789160
关于积分的说明 7790351
捐赠科研通 2445545
什么是DOI,文献DOI怎么找? 1300521
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601046