Systematic review and meta-analysis of the effect of feed enzymes on growth and nutrient digestibility in grow-finisher pigs: Effect of enzyme type and cereal source

食品科学 营养物 化学 残余进料口
作者
A. Torres-Pitarch,Edgar Garcia Manzanilla,Gillian E. Gardiner,John V. O'Doherty,Peadar G. Lawlor
出处
期刊:Animal Feed Science and Technology [Elsevier]
卷期号:251: 153-165 被引量:20
标识
DOI:10.1016/j.anifeedsci.2018.12.007
摘要

Abstract Dietary supplementation of pig diets with exogenous enzymes has been suggested as a strategy to increase nutrient digestibility and improve feed efficiency in grow-finisher pigs. However, inconsistent results are found in the literature. Ingredient composition of the diets is one of the most important sources of variation that may affect enzyme efficacy and consistency of results. A systematic review and a meta-analysis was therefore conducted to determine which exogenous enzymes with which diet type most consistently improve pig growth, nutrient digestibility and feed efficiency. Enzyme type and dietary cereal source were the main explanatory variables included in the models. The mean difference effects of enzyme supplementation on average daily gain (ADG), average daily feed intake (ADFI), gain to feed (G:F), apparent ileal digestibility (AiD) and apparent total tract digestibility (ATTD) of dry matter (DM), crude protein (CP), and gross energy (GE) were calculated for each study and these were used as the effect size estimates in the meta-analysis. A dataset with 139 comparisons from 67 peer-reviewed publications was used in the meta-analysis. In response to enzyme supplementation, G:F was improved in 38 of the 120 comparisons reporting pig growth data, remained un-changed in 78 and deteriorated in 4. Overall, DM and GE AiD, and ATTD were improved by xylanase, xylanase + β-glucanase, mannanase and protease dietary supplementation (P
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
e394282438完成签到,获得积分10
刚刚
在下不才完成签到,获得积分20
刚刚
稳定上分完成签到,获得积分10
1秒前
李健的小迷弟应助Edison采纳,获得10
1秒前
春夏秋冬发布了新的文献求助10
1秒前
1秒前
HeNeArKrXeRn完成签到,获得积分10
1秒前
aa发布了新的文献求助10
2秒前
科研通AI2S应助mmol采纳,获得10
3秒前
粥粥发布了新的文献求助30
3秒前
科研通AI2S应助千早爱音采纳,获得10
3秒前
raffia发布了新的文献求助10
3秒前
糖炒栗子发布了新的文献求助10
4秒前
5秒前
大模型应助peng采纳,获得10
6秒前
果然如此发布了新的文献求助10
6秒前
7秒前
天啦噜发布了新的文献求助10
7秒前
drdouxia发布了新的文献求助10
9秒前
曲奇完成签到,获得积分10
9秒前
AZN完成签到,获得积分10
9秒前
11秒前
琳静完成签到,获得积分10
11秒前
宜醉宜游宜睡应助本墨采纳,获得10
12秒前
12秒前
huangyanan0120完成签到,获得积分10
12秒前
瓷穹发布了新的文献求助10
12秒前
iuuuuu发布了新的文献求助10
13秒前
Ha完成签到,获得积分10
13秒前
13秒前
13秒前
Rainy完成签到,获得积分10
13秒前
科研通AI2S应助春夏秋冬采纳,获得10
13秒前
14秒前
xjcy应助小李博士采纳,获得20
14秒前
15秒前
16秒前
清脆语海发布了新的文献求助10
16秒前
酷波er应助木子乐妍采纳,获得10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135273
求助须知:如何正确求助?哪些是违规求助? 2786262
关于积分的说明 7776475
捐赠科研通 2442202
什么是DOI,文献DOI怎么找? 1298495
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847