Free-atom-like d states in single-atom alloy catalysts

化学 Atom(片上系统) 电子结构 化学物理 催化作用 合金 金属 计算化学 计算机科学 生物化学 嵌入式系统 有机化学
作者
Mark Greiner,Travis E. Jones,Sebastian Beeg,Leon Zwiener,Michael Scherzer,Frank Girgsdies,Simone Piccinin,Marc Armbrüster,Axel Knop‐Gericke,Robert Schlögl
出处
期刊:Nature Chemistry [Springer Nature]
卷期号:10 (10): 1008-1015 被引量:436
标识
DOI:10.1038/s41557-018-0125-5
摘要

Alloying provides a means by which to tune a metal catalyst’s electronic structure and thus tailor its performance; however, mean-field behaviour in metals imposes limits. To access unprecedented catalytic behaviour, materials must exhibit emergent properties that are not simply interpolations of the constituent components’ properties. Here we show an emergent electronic structure in single-atom alloys, whereby weak wavefunction mixing between minority and majority elements results in a free-atom-like electronic structure on the minority element. This unusual electronic structure alters the minority element’s adsorption properties such that the bonding with adsorbates resembles the bonding in molecular metal complexes. We demonstrate this phenomenon with AgCu alloys, dilute in Cu, where the Cu d states are nearly unperturbed from their free-atom state. In situ electron spectroscopy demonstrates that this unusual electronic structure persists in reaction conditions and exhibits a 0.1 eV smaller activation barrier than bulk Cu in methanol reforming. Theory predicts that several other dilute alloys exhibit this phenomenon, which offers a design approach that may lead to alloys with unprecedented catalytic properties. In solid metals, electron orbitals form broad bands and their binding of adsorbates depends on the bandwidth. Now, it is shown that a weak solute–matrix interaction in dilute alloys results in extremely narrow electronic bands on the solute, similar to a free-atom electronic structure. This structure affords unique adsorption properties important for catalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色宛筠完成签到,获得积分10
3秒前
李健的小迷弟应助xch采纳,获得10
3秒前
别当真完成签到 ,获得积分10
4秒前
5秒前
ppyyg发布了新的文献求助10
7秒前
魁梧的千柳完成签到,获得积分10
8秒前
8秒前
xlx完成签到 ,获得积分10
9秒前
RegSequ完成签到,获得积分10
9秒前
10秒前
10秒前
Dr彭0923完成签到,获得积分10
10秒前
GGYY完成签到,获得积分10
11秒前
繁荣的忆文完成签到,获得积分10
11秒前
13秒前
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
cultromics应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
14秒前
鱿鱼发布了新的文献求助10
14秒前
14秒前
15秒前
彭于晏应助ringo采纳,获得10
16秒前
鱼youyouyou发布了新的文献求助10
16秒前
小二郎应助精明的代萱采纳,获得10
16秒前
善学以致用应助赵峻采纳,获得10
16秒前
杏梨完成签到,获得积分10
17秒前
开开完成签到,获得积分10
17秒前
18秒前
寒月如雪发布了新的文献求助10
19秒前
彩色宛筠发布了新的文献求助10
21秒前
薰硝壤应助东方神齐采纳,获得10
21秒前
wwwstt完成签到,获得积分10
21秒前
子菱完成签到,获得积分10
21秒前
高分求助中
LNG地下式貯槽指針(JGA指-107) 1000
LNG地上式貯槽指針 (JGA指 ; 108) 1000
QMS18Ed2 | process management. 2nd ed 600
LNG as a marine fuel—Safety and Operational Guidelines - Bunkering 560
How Stories Change Us A Developmental Science of Stories from Fiction and Real Life 500
九经直音韵母研究 500
Full waveform acoustic data processing 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2935440
求助须知:如何正确求助?哪些是违规求助? 2591040
关于积分的说明 6980414
捐赠科研通 2235974
什么是DOI,文献DOI怎么找? 1187421
版权声明 589879
科研通“疑难数据库(出版商)”最低求助积分说明 581288