Free-atom-like d states in single-atom alloy catalysts

化学 Atom(片上系统) 电子结构 化学物理 催化作用 合金 金属 计算化学 计算机科学 生物化学 嵌入式系统 有机化学
作者
Mark Greiner,Travis E. Jones,Sebastian Beeg,Leon Zwiener,Michael Scherzer,Frank Girgsdies,Simone Piccinin,Marc Armbrüster,Axel Knop‐Gericke,Robert Schlögl
出处
期刊:Nature Chemistry [Springer Nature]
卷期号:10 (10): 1008-1015 被引量:445
标识
DOI:10.1038/s41557-018-0125-5
摘要

Alloying provides a means by which to tune a metal catalyst’s electronic structure and thus tailor its performance; however, mean-field behaviour in metals imposes limits. To access unprecedented catalytic behaviour, materials must exhibit emergent properties that are not simply interpolations of the constituent components’ properties. Here we show an emergent electronic structure in single-atom alloys, whereby weak wavefunction mixing between minority and majority elements results in a free-atom-like electronic structure on the minority element. This unusual electronic structure alters the minority element’s adsorption properties such that the bonding with adsorbates resembles the bonding in molecular metal complexes. We demonstrate this phenomenon with AgCu alloys, dilute in Cu, where the Cu d states are nearly unperturbed from their free-atom state. In situ electron spectroscopy demonstrates that this unusual electronic structure persists in reaction conditions and exhibits a 0.1 eV smaller activation barrier than bulk Cu in methanol reforming. Theory predicts that several other dilute alloys exhibit this phenomenon, which offers a design approach that may lead to alloys with unprecedented catalytic properties. In solid metals, electron orbitals form broad bands and their binding of adsorbates depends on the bandwidth. Now, it is shown that a weak solute–matrix interaction in dilute alloys results in extremely narrow electronic bands on the solute, similar to a free-atom electronic structure. This structure affords unique adsorption properties important for catalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
秋山伊夫完成签到,获得积分10
刚刚
入门的橙橙完成签到 ,获得积分10
刚刚
BONBON发布了新的文献求助10
1秒前
3秒前
TOM完成签到,获得积分10
3秒前
隐形曼青应助欣喜访旋采纳,获得10
4秒前
852应助Millie采纳,获得10
4秒前
龍Ryu完成签到,获得积分10
5秒前
内向凌兰发布了新的文献求助10
6秒前
伍秋望完成签到,获得积分10
6秒前
7秒前
8秒前
跳跃发布了新的文献求助10
9秒前
持卿应助宗磬采纳,获得20
9秒前
9秒前
花生油炒花生米完成签到 ,获得积分10
9秒前
Riki完成签到,获得积分10
11秒前
虚幻白玉发布了新的文献求助10
11秒前
德行天下完成签到,获得积分10
11秒前
Jenny应助lan采纳,获得10
12秒前
fztnh完成签到,获得积分10
12秒前
上官若男应助lyz666采纳,获得10
12秒前
顾念完成签到 ,获得积分10
12秒前
277发布了新的文献求助10
13秒前
小二郎应助GCD采纳,获得10
14秒前
hhhhhh完成签到 ,获得积分10
14秒前
甜味拾荒者完成签到,获得积分10
16秒前
小二郎应助BONBON采纳,获得10
16秒前
17秒前
charllie完成签到 ,获得积分10
17秒前
空禅yew完成签到,获得积分10
18秒前
坚强亦丝应助跳跃采纳,获得10
20秒前
英俊的铭应助cc采纳,获得10
20秒前
huangsan完成签到,获得积分10
20秒前
匹诺曹完成签到,获得积分10
20秒前
21秒前
华仔应助进取拼搏采纳,获得10
21秒前
22秒前
dingdong发布了新的文献求助10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808