电解质
材料科学
化学工程
离子电导率
聚丙烯腈
聚合物
热稳定性
聚乙二醇
单体
聚合
高分子化学
电极
复合材料
化学
工程类
物理化学
作者
Wei Fan,Xiuling Zhang,Congju Li,Shuyu Zhao,Jing Wang
出处
期刊:ACS applied energy materials
[American Chemical Society]
日期:2019-05-24
卷期号:2 (6): 4513-4520
被引量:26
标识
DOI:10.1021/acsaem.9b00766
摘要
A semi-interpenetrating gel polymer electrolyte (S-GPE) membrane is successfully designed through combining high-molecular polyacrylonitrile (PAN), polyethylene glycol (PEG) oligomers, ethoxylated trimethylolpropane triacrylate (ETPTA) monomers, and silica (SiO2) nanoparticles as a whole through an ultraviolet (UV) initiating process. The highly polymerized PAN ensures the thermal stability and toughness, while the oligomer of PEG acts as a soft component and facilitates an improved contact between different interfaces. SiO2 nanoparticles are added with the aim to restrain the crystallinity and improve ionic conductivity. Here, the obtained S-GPE achieves a high ionic conductivity of 8.9 × 10–4 S cm–1 at room temperature and effective dendrites inhibition. Hence, the S-GPE shows an eminent stability that enables the Li|S-GPE|Li cell to stably cycle at 6 mA cm–2 under 3 mA h cm–2 for over 1000 h without a polarization voltage increase. The Li|S-GPE|LiFePO4 battery shows a 131.4 mA h g–1 initial discharge capacity at the first cycle and keeps 93.23% capacity retention after 500 cycles at 0.5 C under room temperature, which is far beyond liquid electrolyte with a conventional PE/PP separator. Prospectively, this work enlightens a promising and optional way in electrolyte design for long-life energy storage devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI