杂原子
化学
催化作用
硼
石墨烯
氮化硼
密度泛函理论
兴奋剂
电化学
碳纤维
过氧化氢
化学工程
无机化学
纳米技术
有机化学
材料科学
计算化学
电极
物理化学
戒指(化学)
复合数
光电子学
复合材料
工程类
作者
Shucheng Chen,Zhihua Chen,Samira Siahrostami,Drew Higgins,Dennis Nordlund,Dimosthenis Sokaras,Taeho Roy Kim,Yunzhi Liu,Xuzhou Yan,Elisabeth Nilsson,Robert Sinclair,Jens K. Nørskov,Thomas F. Jaramillo,Zhenan Bao
摘要
Heteroatom-doped carbons have drawn increasing research interest as catalysts for various electrochemical reactions due to their unique electronic and surface structures. In particular, co-doping of carbon with boron and nitrogen has been shown to provide significant catalytic activity for oxygen reduction reaction (ORR). However, limited experimental work has been done to systematically study these materials, and much remains to be understood about the nature of the active site(s), particularly with regards to the factors underlying the activity enhancements of these boron-carbon-nitrogen (BCN) materials. Herein, we prepare several BCN materials experimentally with a facile and controlled synthesis method, and systematically study their electrochemical performance. We demonstrate the existence of h-BN domains embedded in the graphitic structures of these materials using X-ray spectroscopy. These synthesized structures yield higher activity and selectivity toward the 2e- ORR to H2O2 than structures with individual B or N doping. We further employ density functional theory calculations to understand the role of a variety of h-BN domains within the carbon lattice for the ORR and find that the interface between h-BN domains and graphene exhibits unique catalytic behavior that can preferentially drive the production of H2O2. To the best of our knowledge, this is the first example of h-BN domains in carbon identified as a novel system for the electrochemical production of H2O2.
科研通智能强力驱动
Strongly Powered by AbleSci AI