电
消费(社会学)
需求预测
电力需求
能量(信号处理)
环境经济学
发电
可再生能源
需求响应
高效能源利用
作者
Khuram Pervez Amber,Rizwan Ahmad,Muhammad Waqar Aslam,Anila Kousar,Muhammad Usman,Muhammad Sajid Khan
出处
期刊:Energy
[Elsevier]
日期:2018-08-15
卷期号:157: 886-893
被引量:72
标识
DOI:10.1016/j.energy.2018.05.155
摘要
Abstract The increasing trend in building sector's energy demand calls for reliable and robust energy consumption forecasting models. This study aims to compare prediction capabilities of five different intelligent system techniques by forecasting electricity consumption of an administration building located in London, United Kingdom. These five techniques are; Multiple Regression (MR), Genetic Programming (GP), Artificial Neural Network (ANN), Deep Neural Network (DNN) and Support Vector Machine (SVM). The prediction models are developed based on five years of observed data of five different parameters such as solar radiation, temperature, wind speed, humidity and weekday index. Weekday index is an important parameter introduced to differentiate between working and non-working days. First four years data is used for training the models and to obtain prediction data for fifth year. Finally, the predicted electricity consumption of all models is compared with actual consumption of fifth year. Results demonstrate that ANN performs better than all other four techniques with a Mean Absolute Percentage Error (MAPE) of 6% whereas MR, GP, SVM and DNN have MAPE of 8.5%, 8.7%, 9% and 11%, respectively. The applicability of this study could span to other building categories and will help energy management teams to forecast energy consumption of various buildings.
科研通智能强力驱动
Strongly Powered by AbleSci AI