Constructing Highly Uniform Onion-Ring-like Graphitic Carbon Nitride for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution

石墨氮化碳 光催化 材料科学 微观结构 化学气相沉积 溶解 纳米技术 化学工程 戒指(化学) 三聚氰胺 氮化碳 催化作用 复合材料 有机化学 化学 工程类
作者
Lifeng Cui,Jialing Song,Allister F. McGuire,Shifei Kang,Xueyou Fang,Junjie Wang,Chaochuang Yin,Xi Li,Yangang Wang,Bianxiao Cui
出处
期刊:ACS Nano [American Chemical Society]
卷期号:12 (6): 5551-5558 被引量:239
标识
DOI:10.1021/acsnano.8b01271
摘要

The introduction of microstructure to the metal-free graphitic carbon nitride (g-C3N4) photocatalyst holds promise in enhancing its catalytic performance. However, producing such microstructured g-C3N4 remains technically challenging due to a complicated synthetic process and high cost. In this study, we develop a facile and in-air chemical vapor deposition (CVD) method that produces onion-ring-like g-C3N4 microstructures in a simple, reliable, and economical manner. This method involves the use of randomly packed 350 nm SiO2 microspheres as a hard template and melamine as a CVD precursor for the deposition of a thin layer of g-C3N4 in the narrow space between the SiO2 microspheres. After dissolution of the microsphere template, the resultant g-C3N4 exhibits uniquely uniform onion-ring-like microstructures. Unlike previously reported g-C3N4 powder morphologies that show various degrees of agglomeration and irregularity, the onion-ring-like g-C3N4 is highly dispersed and uniform. The calculated band gap for onion-ring-like g-C3N4 is 2.58 eV, which is significantly narrower than that of bulk g-C3N4 at 2.70 eV. Experimental characterization and testing suggest that, in comparison with bulk g-C3N4, onion-ring-like g-C3N4 facilitates charge separation, extends the lifetime of photoinduced carriers, exhibits 5-fold higher photocatalytic hydrogen evolution, and shows great potential for photocatalytic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
拿铁五分糖完成签到,获得积分10
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助30
2秒前
科研通AI5应助笛子采纳,获得10
2秒前
2秒前
Foxy完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
顺利访枫完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
前程似锦完成签到 ,获得积分10
6秒前
luxiansheng完成签到,获得积分10
6秒前
panghu完成签到,获得积分10
6秒前
汉堡包应助斯文明杰采纳,获得10
6秒前
三颜寻雪发布了新的文献求助10
7秒前
在水一方应助星辰采纳,获得10
8秒前
Z1070741749完成签到,获得积分10
8秒前
8秒前
panghu发布了新的文献求助10
8秒前
9秒前
十元完成签到,获得积分10
9秒前
繁荣的秋发布了新的文献求助10
10秒前
丘比特应助LOVE0077采纳,获得10
11秒前
12秒前
weiwenzuo完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
姜夔发布了新的文献求助10
12秒前
animages发布了新的文献求助70
14秒前
思源应助繁荣的秋采纳,获得10
14秒前
mucheng发布了新的文献求助10
15秒前
15秒前
16秒前
CodeCraft应助panghu采纳,获得10
16秒前
风帆展发布了新的文献求助50
16秒前
HaHa007完成签到 ,获得积分10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662771
求助须知:如何正确求助?哪些是违规求助? 3223591
关于积分的说明 9752272
捐赠科研通 2933546
什么是DOI,文献DOI怎么找? 1606137
邀请新用户注册赠送积分活动 758279
科研通“疑难数据库(出版商)”最低求助积分说明 734771