A new distributionally robust p-hub median problem with uncertain carbon emissions and its tractable approximation method

稳健优化 模棱两可 数学优化 约束(计算机辅助设计) 最优化问题 设施选址问题 集合(抽象数据类型) 高斯分布 数学 计算机科学 几何学 量子力学 物理 程序设计语言
作者
Fanghao Yin,Yanju Chen,Fengxuan Song,Yankui Liu
出处
期刊:Applied Mathematical Modelling [Elsevier]
卷期号:74: 668-693 被引量:32
标识
DOI:10.1016/j.apm.2019.04.056
摘要

The p-hub median problem is to determine the optimal location for p hubs and assign the remaining nodes to hubs so as to minimize the total transportation costs. Under the carbon cap-and-trade policy, we study this problem by addressing the uncertain carbon emissions from the transportation, where the probability distributions of the uncertain carbon emissions are only partially available. A novel distributionally robust optimization model with the ambiguous chance constraint is developed for the uncapacitated single allocation p-hub median problem. The proposed distributionally robust optimization problem is a semi-infinite chance-constrained optimization model, which is computationally intractable for general ambiguity sets. To solve this hard optimization model, we discuss the safe approximation to the ambiguous chance constraint in the following two types of ambiguity sets. The first ambiguity set includes the probability distributions with the bounded perturbations with zero means. In this case, we can turn the ambiguous chance constraint into its computable form based on tractable approximation method. The second ambiguity set is the family of Gaussian perturbations with partial knowledge of expectations and variances. Under this situation, we obtain the deterministic equivalent form of the ambiguous chance constraint. Finally, we validate the proposed optimization model via a case study from Southeast Asia and CAB data set. The numerical experiments indicate that the optimal solutions depend heavily on the distribution information of carbon emissions. In addition, the comparison with the classical robust optimization method shows that the proposed distributionally robust optimization method can avoid over-conservative solutions by incorporating partial probability distribution information. Compared with the stochastic optimization method, the proposed method pays a small price to depict the uncertainty of probability distribution. Compared with the deterministic model, the proposed method generates the new robust optimal solution under uncertain carbon emissions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敏捷的猪猪侠完成签到,获得积分10
1秒前
1秒前
1秒前
咕噜仔发布了新的文献求助50
1秒前
诚c发布了新的文献求助10
2秒前
2秒前
饭宝发布了新的文献求助10
3秒前
SciGPT应助大胆的期待采纳,获得10
3秒前
奋斗夏烟完成签到,获得积分20
3秒前
气泡水完成签到 ,获得积分10
3秒前
rosy完成签到,获得积分10
4秒前
rjy完成签到 ,获得积分10
4秒前
5秒前
沙111发布了新的文献求助10
5秒前
MADKAI发布了新的文献求助10
5秒前
6秒前
zhoull完成签到 ,获得积分10
6秒前
6秒前
6秒前
学术蝗虫发布了新的文献求助10
6秒前
aurora完成签到,获得积分10
7秒前
bopbopbaby发布了新的文献求助200
7秒前
sll完成签到,获得积分10
7秒前
犹豫的一斩应助迅速冰岚采纳,获得10
7秒前
聂裕铭完成签到 ,获得积分10
7秒前
谦让成协完成签到,获得积分10
8秒前
8秒前
大个应助侦察兵采纳,获得10
8秒前
科研通AI5应助猪猪hero采纳,获得10
8秒前
8秒前
8秒前
WilsonT完成签到,获得积分10
8秒前
SDS发布了新的文献求助10
9秒前
LLL发布了新的文献求助10
9秒前
爆米花应助娜行采纳,获得10
10秒前
10秒前
虫二队长完成签到,获得积分10
10秒前
10秒前
manan发布了新的文献求助10
10秒前
铸一字错完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678