A new distributionally robust p-hub median problem with uncertain carbon emissions and its tractable approximation method

稳健优化 模棱两可 数学优化 约束(计算机辅助设计) 最优化问题 设施选址问题 集合(抽象数据类型) 高斯分布 数学 计算机科学 几何学 量子力学 物理 程序设计语言
作者
Fanghao Yin,Yanju Chen,Fengxuan Song,Yankui Liu
出处
期刊:Applied Mathematical Modelling [Elsevier BV]
卷期号:74: 668-693 被引量:32
标识
DOI:10.1016/j.apm.2019.04.056
摘要

The p-hub median problem is to determine the optimal location for p hubs and assign the remaining nodes to hubs so as to minimize the total transportation costs. Under the carbon cap-and-trade policy, we study this problem by addressing the uncertain carbon emissions from the transportation, where the probability distributions of the uncertain carbon emissions are only partially available. A novel distributionally robust optimization model with the ambiguous chance constraint is developed for the uncapacitated single allocation p-hub median problem. The proposed distributionally robust optimization problem is a semi-infinite chance-constrained optimization model, which is computationally intractable for general ambiguity sets. To solve this hard optimization model, we discuss the safe approximation to the ambiguous chance constraint in the following two types of ambiguity sets. The first ambiguity set includes the probability distributions with the bounded perturbations with zero means. In this case, we can turn the ambiguous chance constraint into its computable form based on tractable approximation method. The second ambiguity set is the family of Gaussian perturbations with partial knowledge of expectations and variances. Under this situation, we obtain the deterministic equivalent form of the ambiguous chance constraint. Finally, we validate the proposed optimization model via a case study from Southeast Asia and CAB data set. The numerical experiments indicate that the optimal solutions depend heavily on the distribution information of carbon emissions. In addition, the comparison with the classical robust optimization method shows that the proposed distributionally robust optimization method can avoid over-conservative solutions by incorporating partial probability distribution information. Compared with the stochastic optimization method, the proposed method pays a small price to depict the uncertainty of probability distribution. Compared with the deterministic model, the proposed method generates the new robust optimal solution under uncertain carbon emissions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ding应助啦啦啦采纳,获得10
1秒前
十年完成签到 ,获得积分10
3秒前
lalalapa666完成签到,获得积分10
3秒前
sue完成签到,获得积分10
3秒前
笑点低的泥猴桃完成签到,获得积分10
3秒前
swsx1317完成签到,获得积分10
3秒前
4秒前
自然紫山完成签到,获得积分10
4秒前
在水一方应助Wdd采纳,获得10
4秒前
yiyi完成签到,获得积分10
4秒前
火狐狸kc完成签到,获得积分10
5秒前
SwampMan完成签到 ,获得积分10
6秒前
Seiswan完成签到,获得积分10
6秒前
6秒前
研友_nPPdan完成签到,获得积分10
7秒前
陈明宇关注了科研通微信公众号
7秒前
7秒前
yanm完成签到,获得积分10
7秒前
cistronic完成签到,获得积分10
8秒前
无语的沛春完成签到,获得积分10
8秒前
老刘完成签到,获得积分10
9秒前
小橙子完成签到,获得积分10
9秒前
闪闪的发布了新的文献求助10
9秒前
chen完成签到,获得积分10
9秒前
puff完成签到,获得积分10
9秒前
10秒前
frank完成签到,获得积分10
11秒前
Yuan完成签到,获得积分10
11秒前
PG完成签到 ,获得积分10
11秒前
YRRRR完成签到 ,获得积分10
12秒前
朴素青寒发布了新的文献求助10
12秒前
Jeremy King发布了新的文献求助10
12秒前
天Q完成签到,获得积分10
12秒前
13秒前
weixin112233完成签到,获得积分10
13秒前
7777完成签到,获得积分20
14秒前
小葡萄完成签到 ,获得积分10
14秒前
14秒前
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015970
求助须知:如何正确求助?哪些是违规求助? 3555964
关于积分的说明 11319479
捐赠科研通 3289040
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044