A new distributionally robust p-hub median problem with uncertain carbon emissions and its tractable approximation method

稳健优化 模棱两可 数学优化 约束(计算机辅助设计) 最优化问题 设施选址问题 集合(抽象数据类型) 高斯分布 数学 计算机科学 几何学 量子力学 物理 程序设计语言
作者
Fanghao Yin,Yanju Chen,Fengxuan Song,Yankui Liu
出处
期刊:Applied Mathematical Modelling [Elsevier]
卷期号:74: 668-693 被引量:32
标识
DOI:10.1016/j.apm.2019.04.056
摘要

The p-hub median problem is to determine the optimal location for p hubs and assign the remaining nodes to hubs so as to minimize the total transportation costs. Under the carbon cap-and-trade policy, we study this problem by addressing the uncertain carbon emissions from the transportation, where the probability distributions of the uncertain carbon emissions are only partially available. A novel distributionally robust optimization model with the ambiguous chance constraint is developed for the uncapacitated single allocation p-hub median problem. The proposed distributionally robust optimization problem is a semi-infinite chance-constrained optimization model, which is computationally intractable for general ambiguity sets. To solve this hard optimization model, we discuss the safe approximation to the ambiguous chance constraint in the following two types of ambiguity sets. The first ambiguity set includes the probability distributions with the bounded perturbations with zero means. In this case, we can turn the ambiguous chance constraint into its computable form based on tractable approximation method. The second ambiguity set is the family of Gaussian perturbations with partial knowledge of expectations and variances. Under this situation, we obtain the deterministic equivalent form of the ambiguous chance constraint. Finally, we validate the proposed optimization model via a case study from Southeast Asia and CAB data set. The numerical experiments indicate that the optimal solutions depend heavily on the distribution information of carbon emissions. In addition, the comparison with the classical robust optimization method shows that the proposed distributionally robust optimization method can avoid over-conservative solutions by incorporating partial probability distribution information. Compared with the stochastic optimization method, the proposed method pays a small price to depict the uncertainty of probability distribution. Compared with the deterministic model, the proposed method generates the new robust optimal solution under uncertain carbon emissions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑的思卉完成签到,获得积分10
1秒前
luo发布了新的文献求助10
1秒前
1秒前
1秒前
supersky完成签到,获得积分10
2秒前
3秒前
3秒前
甜蜜冰颜发布了新的文献求助10
3秒前
shinexxg发布了新的文献求助10
4秒前
hyy发布了新的文献求助10
5秒前
张小明发布了新的文献求助10
5秒前
6秒前
悦耳的真完成签到,获得积分10
6秒前
堀江真夏发布了新的文献求助10
7秒前
8秒前
BJ_whc发布了新的文献求助10
8秒前
张小明完成签到,获得积分10
12秒前
demon发布了新的文献求助10
12秒前
小鱼儿完成签到,获得积分10
13秒前
14秒前
情怀应助牛马研究生采纳,获得10
15秒前
Daheitao完成签到,获得积分10
16秒前
十一给十一的求助进行了留言
17秒前
haowu发布了新的文献求助10
21秒前
霸气以菱完成签到 ,获得积分10
21秒前
shinexxg完成签到,获得积分10
22秒前
汉堡包应助Zerorrrr采纳,获得10
23秒前
云中雨完成签到 ,获得积分10
23秒前
兮兮完成签到,获得积分10
23秒前
youngyang完成签到 ,获得积分10
24秒前
24秒前
27秒前
demon完成签到,获得积分10
27秒前
xiaoxiao发布了新的文献求助100
28秒前
29秒前
30秒前
年轻的香旋完成签到,获得积分20
31秒前
33秒前
youngyang关注了科研通微信公众号
33秒前
hyy完成签到,获得积分10
35秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161774
求助须知:如何正确求助?哪些是违规求助? 2813049
关于积分的说明 7898270
捐赠科研通 2472043
什么是DOI,文献DOI怎么找? 1316316
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129