KGAT

计算机科学 利用 推荐系统 嵌入 图形 正规化(语言学) 人工智能 机器学习 理论计算机科学 知识图 实证研究 数学 计算机安全 统计
作者
Xiang Wang,Xiangnan He,Yixin Cao,Meng Liu,Tat‐Seng Chua
标识
DOI:10.1145/3292500.3330989
摘要

To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助药小博采纳,获得10
2秒前
S.L发布了新的文献求助10
4秒前
4秒前
应樱完成签到 ,获得积分10
4秒前
核桃应助azorworld6采纳,获得10
5秒前
5秒前
执着的冬瓜完成签到 ,获得积分10
5秒前
MchemG应助zhanggongwei采纳,获得10
6秒前
左时樾完成签到,获得积分10
7秒前
图图完成签到 ,获得积分10
7秒前
咪花嗦发布了新的文献求助10
8秒前
8秒前
Rondab应助陈漂亮采纳,获得10
8秒前
科研狗发布了新的文献求助10
9秒前
顾矜应助hyx采纳,获得10
9秒前
桐桐应助myq采纳,获得20
10秒前
10秒前
Raymond应助meng采纳,获得10
11秒前
xxl完成签到,获得积分10
12秒前
12秒前
科研小白完成签到 ,获得积分10
12秒前
CipherSage应助齐平露采纳,获得10
12秒前
S.L完成签到,获得积分10
12秒前
xxh完成签到,获得积分10
13秒前
情怀应助咪花嗦采纳,获得10
14秒前
爆米花应助ZT采纳,获得10
15秒前
16秒前
16秒前
MchemG应助zhanggongwei采纳,获得10
16秒前
18秒前
18秒前
余南发布了新的文献求助10
19秒前
不秋草完成签到 ,获得积分10
19秒前
天天快乐应助科研狗采纳,获得10
19秒前
肖123发布了新的文献求助10
20秒前
20秒前
wanci应助phil采纳,获得10
20秒前
香蕉觅云应助白羽佳采纳,获得10
20秒前
21秒前
残山醉梦发布了新的文献求助10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956621
求助须知:如何正确求助?哪些是违规求助? 3502685
关于积分的说明 11109755
捐赠科研通 3233502
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870676
科研通“疑难数据库(出版商)”最低求助积分说明 802143