KGAT

计算机科学 利用 推荐系统 嵌入 图形 正规化(语言学) 人工智能 机器学习 理论计算机科学 知识图 实证研究 数学 计算机安全 统计
作者
Xiang Wang,Xiangnan He,Yixin Cao,Meng Liu,Tat‐Seng Chua
标识
DOI:10.1145/3292500.3330989
摘要

To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lenny发布了新的文献求助10
1秒前
TJ发布了新的文献求助10
1秒前
2秒前
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Megumi发布了新的文献求助10
4秒前
NexusExplorer应助刘佳婷采纳,获得10
5秒前
5秒前
jitanxiang发布了新的文献求助10
5秒前
粗犷的采白关注了科研通微信公众号
8秒前
橙子发布了新的文献求助10
9秒前
瑞瑞发布了新的文献求助10
9秒前
MasterE完成签到,获得积分10
10秒前
12秒前
星辰大海应助醉熏的井采纳,获得10
12秒前
科研通AI2S应助lxy采纳,获得10
13秒前
Lucky发布了新的文献求助10
16秒前
莫弈花茶发布了新的文献求助10
18秒前
19秒前
情怀应助xrb采纳,获得30
20秒前
幸福的雪枫完成签到 ,获得积分10
21秒前
TAA66完成签到,获得积分10
21秒前
852应助jitanxiang采纳,获得10
24秒前
JMao发布了新的文献求助10
24秒前
zzz关注了科研通微信公众号
25秒前
小猪啵比完成签到 ,获得积分20
25秒前
Lucky完成签到,获得积分10
26秒前
27秒前
李爱国应助阔达的凡采纳,获得10
30秒前
31秒前
31秒前
吴大宝发布了新的文献求助10
31秒前
37秒前
淡淡冬瓜完成签到,获得积分10
38秒前
ixteam完成签到,获得积分0
38秒前
阔达飞双完成签到,获得积分10
39秒前
btbt完成签到 ,获得积分20
39秒前
图图完成签到,获得积分10
40秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161007
求助须知:如何正确求助?哪些是违规求助? 2812335
关于积分的说明 7895242
捐赠科研通 2471208
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631071
版权声明 602086