A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease

过度拟合 认知障碍 机器学习 深度学习 认知 人工神经网络 神经心理学 人工智能 心理学 模式识别(心理学) 计算机科学 神经科学
作者
S Spasov,Luca Passamonti,Andrea Duggento,Píetro Lió,Nicola Toschi
出处
期刊:NeuroImage [Elsevier BV]
卷期号:189: 276-287 被引量:316
标识
DOI:10.1016/j.neuroimage.2019.01.031
摘要

Some forms of mild cognitive impairment (MCI) are the clinical precursors of Alzheimer's disease (AD), while other MCI types tend to remain stable over-time and do not progress to AD. To identify and choose effective and personalized strategies to prevent or slow the progression of AD, we need to develop objective measures that are able to discriminate the MCI patients who are at risk of AD from those MCI patients who have less risk to develop AD. Here, we present a novel deep learning architecture, based on dual learning and an ad hoc layer for 3D separable convolutions, which aims at identifying MCI patients who have a high likelihood of developing AD within 3 years. Our deep learning procedures combine structural magnetic resonance imaging (MRI), demographic, neuropsychological, and APOe4 genetic data as input measures. The most novel characteristics of our machine learning model compared to previous ones are the following: 1) our deep learning model is multi-tasking, in the sense that it jointly learns to simultaneously predict both MCI to AD conversion as well as AD vs. healthy controls classification, which facilitates relevant feature extraction for AD prognostication; 2) the neural network classifier employs fewer parameters than other deep learning architectures which significantly limits data-overfitting (we use ∼550,000 network parameters, which is orders of magnitude lower than other network designs); 3) both structural MRI images and their warp field characteristics, which quantify local volumetric changes in relation to the MRI template, were used as separate input streams to extract as much information as possible from the MRI data. All analyses were performed on a subset of the database made publicly available via the Alzheimer's Disease Neuroimaging Initiative (ADNI), (n = 785 participants, n = 192 AD patients, n = 409 MCI patients (including both MCI patients who convert to AD and MCI patients who do not covert to AD), and n = 184 healthy controls). The most predictive combination of inputs were the structural MRI images and the demographic, neuropsychological, and APOe4 data. In contrast, the warp field metrics were of little added predictive value. The algorithm was able to distinguish the MCI patients developing AD within 3 years from those patients with stable MCI over the same time-period with an area under the curve (AUC) of 0.925 and a 10-fold cross-validated accuracy of 86%, a sensitivity of 87.5%, and specificity of 85%. To our knowledge, this is the highest performance achieved so far using similar datasets. The same network provided an AUC of 1 and 100% accuracy, sensitivity, and specificity when classifying patients with AD from healthy controls. Our classification framework was also robust to the use of different co-registration templates and potentially irrelevant features/image portions. Our approach is flexible and can in principle integrate other imaging modalities, such as PET, and diverse other sets of clinical data. The convolutional framework is potentially applicable to any 3D image dataset and gives the flexibility to design a computer-aided diagnosis system targeting the prediction of several medical conditions and neuropsychiatric disorders via multi-modal imaging and tabular clinical data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小脸红扑扑完成签到 ,获得积分10
1秒前
奋斗的凡完成签到 ,获得积分10
1秒前
2秒前
zhutier完成签到,获得积分10
3秒前
wrr完成签到,获得积分10
3秒前
WxChen完成签到,获得积分10
3秒前
开朗艳一完成签到,获得积分10
5秒前
Wonder完成签到,获得积分10
6秒前
yang完成签到,获得积分10
8秒前
123123完成签到 ,获得积分10
9秒前
温暖宛筠完成签到,获得积分10
9秒前
小欣6116完成签到,获得积分10
10秒前
请叫我风吹麦浪应助冬月采纳,获得10
10秒前
LIUYONG发布了新的文献求助10
11秒前
11秒前
肖雪依完成签到,获得积分10
11秒前
影子完成签到,获得积分10
12秒前
13秒前
晨珂完成签到,获得积分10
13秒前
Florencia发布了新的文献求助10
15秒前
xiezhuochun发布了新的文献求助10
16秒前
16秒前
同瓜不同命完成签到,获得积分10
18秒前
牛马哥发布了新的文献求助10
19秒前
温婉的松鼠完成签到,获得积分10
19秒前
20秒前
辛勤的寄瑶完成签到,获得积分10
20秒前
Lauren完成签到 ,获得积分10
21秒前
22秒前
忆枫完成签到,获得积分10
26秒前
炒鸡小将发布了新的文献求助10
26秒前
花壳在逃野猪完成签到 ,获得积分10
26秒前
26秒前
银子吃好的完成签到,获得积分10
27秒前
西瓜霜完成签到 ,获得积分10
27秒前
科研废物完成签到 ,获得积分10
29秒前
冬月完成签到,获得积分10
29秒前
29秒前
马东完成签到,获得积分10
31秒前
搜集达人应助动听的秋白采纳,获得10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029