A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease

过度拟合 认知障碍 机器学习 深度学习 认知 人工神经网络 神经心理学 人工智能 心理学 模式识别(心理学) 计算机科学 神经科学
作者
S Spasov,Luca Passamonti,Andrea Duggento,Píetro Lió,Nicola Toschi
出处
期刊:NeuroImage [Elsevier BV]
卷期号:189: 276-287 被引量:316
标识
DOI:10.1016/j.neuroimage.2019.01.031
摘要

Some forms of mild cognitive impairment (MCI) are the clinical precursors of Alzheimer's disease (AD), while other MCI types tend to remain stable over-time and do not progress to AD. To identify and choose effective and personalized strategies to prevent or slow the progression of AD, we need to develop objective measures that are able to discriminate the MCI patients who are at risk of AD from those MCI patients who have less risk to develop AD. Here, we present a novel deep learning architecture, based on dual learning and an ad hoc layer for 3D separable convolutions, which aims at identifying MCI patients who have a high likelihood of developing AD within 3 years. Our deep learning procedures combine structural magnetic resonance imaging (MRI), demographic, neuropsychological, and APOe4 genetic data as input measures. The most novel characteristics of our machine learning model compared to previous ones are the following: 1) our deep learning model is multi-tasking, in the sense that it jointly learns to simultaneously predict both MCI to AD conversion as well as AD vs. healthy controls classification, which facilitates relevant feature extraction for AD prognostication; 2) the neural network classifier employs fewer parameters than other deep learning architectures which significantly limits data-overfitting (we use ∼550,000 network parameters, which is orders of magnitude lower than other network designs); 3) both structural MRI images and their warp field characteristics, which quantify local volumetric changes in relation to the MRI template, were used as separate input streams to extract as much information as possible from the MRI data. All analyses were performed on a subset of the database made publicly available via the Alzheimer's Disease Neuroimaging Initiative (ADNI), (n = 785 participants, n = 192 AD patients, n = 409 MCI patients (including both MCI patients who convert to AD and MCI patients who do not covert to AD), and n = 184 healthy controls). The most predictive combination of inputs were the structural MRI images and the demographic, neuropsychological, and APOe4 data. In contrast, the warp field metrics were of little added predictive value. The algorithm was able to distinguish the MCI patients developing AD within 3 years from those patients with stable MCI over the same time-period with an area under the curve (AUC) of 0.925 and a 10-fold cross-validated accuracy of 86%, a sensitivity of 87.5%, and specificity of 85%. To our knowledge, this is the highest performance achieved so far using similar datasets. The same network provided an AUC of 1 and 100% accuracy, sensitivity, and specificity when classifying patients with AD from healthy controls. Our classification framework was also robust to the use of different co-registration templates and potentially irrelevant features/image portions. Our approach is flexible and can in principle integrate other imaging modalities, such as PET, and diverse other sets of clinical data. The convolutional framework is potentially applicable to any 3D image dataset and gives the flexibility to design a computer-aided diagnosis system targeting the prediction of several medical conditions and neuropsychiatric disorders via multi-modal imaging and tabular clinical data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
音吹完成签到,获得积分20
2秒前
YJJ完成签到,获得积分20
2秒前
小余发布了新的文献求助20
3秒前
3秒前
独立卫生间完成签到,获得积分10
3秒前
CodeCraft应助applooc采纳,获得10
4秒前
hufan2441完成签到,获得积分10
4秒前
4秒前
Grim发布了新的文献求助10
4秒前
脑洞疼应助雪落采纳,获得10
4秒前
5秒前
漫漫楚威风完成签到 ,获得积分10
5秒前
5秒前
等等完成签到,获得积分10
6秒前
多情怜蕾完成签到,获得积分10
7秒前
8秒前
隐形曼青应助失眠无声采纳,获得10
8秒前
李明月发布了新的文献求助10
8秒前
8秒前
hufan2441发布了新的文献求助10
10秒前
金红水晶应助玄音采纳,获得20
10秒前
大饼卷肉发布了新的文献求助10
10秒前
jin晨发布了新的文献求助10
11秒前
11秒前
12秒前
gqfqg发布了新的文献求助10
12秒前
bkagyin应助大饼卷肉采纳,获得10
13秒前
万能图书馆应助肉肉采纳,获得10
13秒前
13秒前
14秒前
上官若男应助ziying126采纳,获得10
15秒前
优美电脑发布了新的文献求助10
15秒前
柒柒球发布了新的文献求助30
15秒前
李健的小迷弟应助wjx采纳,获得10
16秒前
16秒前
16秒前
SYLH应助niupotr采纳,获得10
17秒前
victor完成签到,获得积分20
17秒前
科研通AI2S应助KeYang采纳,获得10
18秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974856
求助须知:如何正确求助?哪些是违规求助? 3519400
关于积分的说明 11198085
捐赠科研通 3255563
什么是DOI,文献DOI怎么找? 1797860
邀请新用户注册赠送积分活动 877208
科研通“疑难数据库(出版商)”最低求助积分说明 806219