亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease

过度拟合 认知障碍 机器学习 深度学习 认知 人工神经网络 神经心理学 人工智能 心理学 模式识别(心理学) 计算机科学 神经科学
作者
S Spasov,Luca Passamonti,Andrea Duggento,Píetro Lió,Nicola Toschi
出处
期刊:NeuroImage [Elsevier]
卷期号:189: 276-287 被引量:316
标识
DOI:10.1016/j.neuroimage.2019.01.031
摘要

Some forms of mild cognitive impairment (MCI) are the clinical precursors of Alzheimer's disease (AD), while other MCI types tend to remain stable over-time and do not progress to AD. To identify and choose effective and personalized strategies to prevent or slow the progression of AD, we need to develop objective measures that are able to discriminate the MCI patients who are at risk of AD from those MCI patients who have less risk to develop AD. Here, we present a novel deep learning architecture, based on dual learning and an ad hoc layer for 3D separable convolutions, which aims at identifying MCI patients who have a high likelihood of developing AD within 3 years. Our deep learning procedures combine structural magnetic resonance imaging (MRI), demographic, neuropsychological, and APOe4 genetic data as input measures. The most novel characteristics of our machine learning model compared to previous ones are the following: 1) our deep learning model is multi-tasking, in the sense that it jointly learns to simultaneously predict both MCI to AD conversion as well as AD vs. healthy controls classification, which facilitates relevant feature extraction for AD prognostication; 2) the neural network classifier employs fewer parameters than other deep learning architectures which significantly limits data-overfitting (we use ∼550,000 network parameters, which is orders of magnitude lower than other network designs); 3) both structural MRI images and their warp field characteristics, which quantify local volumetric changes in relation to the MRI template, were used as separate input streams to extract as much information as possible from the MRI data. All analyses were performed on a subset of the database made publicly available via the Alzheimer's Disease Neuroimaging Initiative (ADNI), (n = 785 participants, n = 192 AD patients, n = 409 MCI patients (including both MCI patients who convert to AD and MCI patients who do not covert to AD), and n = 184 healthy controls). The most predictive combination of inputs were the structural MRI images and the demographic, neuropsychological, and APOe4 data. In contrast, the warp field metrics were of little added predictive value. The algorithm was able to distinguish the MCI patients developing AD within 3 years from those patients with stable MCI over the same time-period with an area under the curve (AUC) of 0.925 and a 10-fold cross-validated accuracy of 86%, a sensitivity of 87.5%, and specificity of 85%. To our knowledge, this is the highest performance achieved so far using similar datasets. The same network provided an AUC of 1 and 100% accuracy, sensitivity, and specificity when classifying patients with AD from healthy controls. Our classification framework was also robust to the use of different co-registration templates and potentially irrelevant features/image portions. Our approach is flexible and can in principle integrate other imaging modalities, such as PET, and diverse other sets of clinical data. The convolutional framework is potentially applicable to any 3D image dataset and gives the flexibility to design a computer-aided diagnosis system targeting the prediction of several medical conditions and neuropsychiatric disorders via multi-modal imaging and tabular clinical data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
任性蘑菇完成签到 ,获得积分10
刚刚
好人一生平安完成签到,获得积分10
6秒前
Nn发布了新的文献求助10
10秒前
11秒前
korchid发布了新的文献求助10
14秒前
14秒前
刘大米发布了新的文献求助10
20秒前
20秒前
Step发布了新的文献求助10
26秒前
刘大米完成签到,获得积分10
32秒前
qz发布了新的文献求助10
43秒前
爱撒娇的寒香完成签到,获得积分10
47秒前
iorpi完成签到,获得积分10
51秒前
1分钟前
1分钟前
布通发布了新的文献求助10
1分钟前
剑八发布了新的文献求助10
1分钟前
布通完成签到,获得积分10
1分钟前
ph144h完成签到,获得积分20
1分钟前
剑八完成签到,获得积分10
1分钟前
qz完成签到,获得积分10
1分钟前
花开四海完成签到 ,获得积分10
1分钟前
可夫司机完成签到 ,获得积分10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
华仔应助任性机器猫采纳,获得10
1分钟前
Roger完成签到,获得积分10
2分钟前
2分钟前
3分钟前
Suyi完成签到,获得积分20
3分钟前
夏天无完成签到,获得积分10
3分钟前
3分钟前
48662发布了新的文献求助10
3分钟前
3分钟前
XiYao驳回了852应助
3分钟前
cbrown发布了新的文献求助10
3分钟前
mengyuhuan完成签到 ,获得积分0
3分钟前
marshyyy应助Suyi采纳,获得10
3分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126069
求助须知:如何正确求助?哪些是违规求助? 2776271
关于积分的说明 7729714
捐赠科研通 2431733
什么是DOI,文献DOI怎么找? 1292230
科研通“疑难数据库(出版商)”最低求助积分说明 622601
版权声明 600392