Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network

异常检测 单变量 计算机科学 多元统计 异常(物理) 系列(地层学) 时间序列 人工智能 数据挖掘 人工神经网络 机器学习 凝聚态物理 生物 物理 古生物学
作者
Ya Su,Youjian Zhao,Chenhao Niu,Rong Liu,Wei Sun,Dan Pei
标识
DOI:10.1145/3292500.3330672
摘要

Industry devices (i.e., entities) such as server machines, spacecrafts, engines, etc., are typically monitored with multivariate time series, whose anomaly detection is critical for an entity's service quality management. However, due to the complex temporal dependence and stochasticity of multivariate time series, their anomaly detection remains a big challenge. This paper proposes OmniAnomaly, a stochastic recurrent neural network for multivariate time series anomaly detection that works well robustly for various devices. Its core idea is to capture the normal patterns of multivariate time series by learning their robust representations with key techniques such as stochastic variable connection and planar normalizing flow, reconstruct input data by the representations, and use the reconstruction probabilities to determine anomalies. Moreover, for a detected entity anomaly, OmniAnomaly can provide interpretations based on the reconstruction probabilities of its constituent univariate time series. The evaluation experiments are conducted on two public datasets from aerospace and a new server machine dataset (collected and released by us) from an Internet company. OmniAnomaly achieves an overall F1-Score of 0.86 in three real-world datasets, signicantly outperforming the best performing baseline method by 0.09. The interpretation accuracy for OmniAnomaly is up to 0.89.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭泓嵩完成签到,获得积分10
1秒前
1秒前
1秒前
樱桃小贩完成签到,获得积分0
2秒前
苹果发夹完成签到 ,获得积分10
3秒前
3秒前
张胡星发布了新的文献求助10
4秒前
5秒前
赘婿应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
wy.he应助科研通管家采纳,获得20
6秒前
6秒前
6秒前
PU聚氨酯完成签到,获得积分10
7秒前
小耿完成签到,获得积分20
8秒前
科研通AI5应助怪味痘采纳,获得10
8秒前
9秒前
Elvin2527给Elvin2527的求助进行了留言
10秒前
量子星尘发布了新的文献求助10
12秒前
机智的乌发布了新的文献求助10
12秒前
RJ完成签到,获得积分10
13秒前
14秒前
15秒前
神秘玩家完成签到 ,获得积分10
17秒前
小鲨鱼发布了新的文献求助10
17秒前
CipherSage应助li199624采纳,获得10
18秒前
Lny应助max采纳,获得10
18秒前
英姑应助max采纳,获得10
19秒前
彩色的芝麻完成签到 ,获得积分10
19秒前
科研通AI6应助akz采纳,获得10
20秒前
20秒前
Bio应助kingwill采纳,获得30
21秒前
怪味痘发布了新的文献求助10
21秒前
白兔发布了新的文献求助20
21秒前
在水一方应助与枫采纳,获得10
22秒前
Guo1020181发布了新的文献求助10
22秒前
阔达的乌冬面完成签到,获得积分10
24秒前
大模型应助VDC采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4574269
求助须知:如何正确求助?哪些是违规求助? 3994309
关于积分的说明 12365141
捐赠科研通 3667553
什么是DOI,文献DOI怎么找? 2021284
邀请新用户注册赠送积分活动 1055423
科研通“疑难数据库(出版商)”最低求助积分说明 942833