材料科学
功率密度
复合数
化学工程
双功能
离子
纳米颗粒
电极
阴极
储能
纳米技术
石墨烯
电导率
密度泛函理论
复合材料
物理化学
功率(物理)
热力学
计算化学
有机化学
催化作用
化学
工程类
物理
作者
Yue Zhang,Zihe Zhang,Yakun Tang,Dianzeng Jia,Yudai Huang,Wei Kong Pang,Zhanhu Guo,Zhen Zhou
标识
DOI:10.1002/adfm.201807895
摘要
Abstract The sluggish kinetics of Faradaic reactions in bulk electrodes is a significant obstacle to achieve high energy and power density in energy storage devices. Herein, a composite of LiFePO 4 particles trapped in fast bifunctional conductor rGO&C@Li 3 V 2 (PO 4 ) 3 nanosheets is prepared through an in situ competitive redox reaction. The composite exhibits extraordinary rate capability (71 mAh g −1 at 15 A g −1 ) and remarkable cycling stability (0.03% decay per cycle over 1000 cycles at 10 A g −1 ). Improved extrinsic pseudocapacitive contribution is the origin of fast kinetics, which endows this composite with high energy and power density, since the unique 2D nanosheets and embedded ultrafine LiFePO 4 nanoparticles can shorten the ion and electron diffusion length. Even applied to Li‐ion hybrid capacitors, the obtained devices still achieve high power density of 3.36 kW kg −1 along with high energy density up to 77.8 Wh kg −1 . Density functional theory computations also validate that the remarkable rate performance is facilitated by the desirable ionic and electronic conductivity of the composite.
科研通智能强力驱动
Strongly Powered by AbleSci AI