Using machine learning to characterize heart failure across the scales

心力衰竭 推论 人工智能 贝叶斯推理 计算机科学 机器学习 高斯过程 克里金 心肌细胞 贝叶斯概率 高斯分布 心脏病学 医学 物理 量子力学
作者
Mathias Peirlinck,Francisco Sahli Costabal,Kenneth E. Sack,Jenny S. Choy,Ghassan S. Kassab,Julius M. Guccione,Matthieu De Beule,Patrick Segers,Ellen Kuhl
出处
期刊:Biomechanics and Modeling in Mechanobiology [Springer Nature]
卷期号:18 (6): 1987-2001 被引量:61
标识
DOI:10.1007/s10237-019-01190-w
摘要

Heart failure is a progressive chronic condition in which the heart undergoes detrimental changes in structure and function across multiple scales in time and space. Multiscale models of cardiac growth can provide a patient-specific window into the progression of heart failure and guide personalized treatment planning. Yet, the predictive potential of cardiac growth models remains poorly understood. Here, we quantify predictive power of a stretch-driven growth model using a chronic porcine heart failure model, subject-specific multiscale simulation, and machine learning techniques. We combine hierarchical modeling, Bayesian inference, and Gaussian process regression to quantify the uncertainty of our experimental measurements during an 8-week long study of volume overload in six pigs. We then propagate the experimental uncertainties from the organ scale through our computational growth model and quantify the agreement between experimentally measured and computationally predicted alterations on the cellular scale. Our study suggests that stretch is the major stimulus for myocyte lengthening and demonstrates that a stretch-driven growth model alone can explain [Formula: see text] of the observed changes in myocyte morphology. We anticipate that our approach will allow us to design, calibrate, and validate a new generation of multiscale cardiac growth models to explore the interplay of various subcellular-, cellular-, and organ-level contributors to heart failure. Using machine learning in heart failure research has the potential to combine information from different sources, subjects, and scales to provide a more holistic picture of the failing heart and point toward new treatment strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leoskrrr完成签到,获得积分10
6秒前
谨慎的幻悲完成签到,获得积分10
7秒前
科研通AI6应助李博士采纳,获得10
8秒前
9秒前
忘尘完成签到 ,获得积分20
10秒前
josh完成签到,获得积分10
12秒前
13秒前
爆米花应助能干的烧鹅采纳,获得10
15秒前
花南星完成签到,获得积分10
16秒前
17秒前
苏九发布了新的文献求助10
17秒前
18秒前
嵇老五发布了新的文献求助10
20秒前
wBw完成签到,获得积分0
21秒前
Longy完成签到,获得积分10
22秒前
22秒前
泽灵完成签到,获得积分10
23秒前
KELE发布了新的文献求助10
24秒前
27秒前
28秒前
Orange应助王蝶采纳,获得10
29秒前
落雪无痕完成签到,获得积分10
29秒前
32秒前
33秒前
BB完成签到,获得积分10
33秒前
所所应助烂漫新儿采纳,获得10
36秒前
BB发布了新的文献求助10
36秒前
36秒前
Tink完成签到,获得积分0
40秒前
左白易发布了新的文献求助10
40秒前
云淡风清完成签到 ,获得积分10
40秒前
42秒前
史小霜发布了新的文献求助10
45秒前
科研通AI6应助科研通管家采纳,获得10
45秒前
李爱国应助科研通管家采纳,获得10
45秒前
浮游应助科研通管家采纳,获得10
45秒前
传奇3应助科研通管家采纳,获得10
45秒前
彭于晏应助科研通管家采纳,获得10
45秒前
浮游应助科研通管家采纳,获得10
45秒前
小蘑菇应助科研通管家采纳,获得10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560462
求助须知:如何正确求助?哪些是违规求助? 4645669
关于积分的说明 14675889
捐赠科研通 4586829
什么是DOI,文献DOI怎么找? 2516548
邀请新用户注册赠送积分活动 1490164
关于科研通互助平台的介绍 1461007