Abstract The design of efficient and stable photocatalysts for robust CO 2 reduction without sacrifice reagent or extra photosensitizer is still challenging. Herein, a single-atom catalyst of isolated single atom cobalt incorporated into Bi 3 O 4 Br atomic layers is successfully prepared. The cobalt single atoms in the Bi 3 O 4 Br favors the charge transition, carrier separation, CO 2 adsorption and activation. It can lower the CO 2 activation energy barrier through stabilizing the COOH* intermediates and tune the rate-limiting step from the formation of adsorbed intermediate COOH* to be CO* desorption. Taking advantage of cobalt single atoms and two-dimensional ultrathin Bi 3 O 4 Br atomic layers, the optimized catalyst can perform light-driven CO 2 reduction with a selective CO formation rate of 107.1 µmol g −1 h −1 , roughly 4 and 32 times higher than that of atomic layer Bi 3 O 4 Br and bulk Bi 3 O 4 Br, respectively.