Ultrarapid sonochemical synthesis of enzyme-incorporated copper nanoflowers and their application to mediatorless glucose biofuel cell

葡萄糖氧化酶 漆酶 热稳定性 生物燃料 过氧化氢 化学 化学工程 生物传感器 生物化学 生物技术 生物 工程类
作者
Minsoo Chung,Tuan Loi Nguyen,Thao Quynh Ngan Tran,Hyon Hee Yoon,Il Tae Kim,Moon Il Kim
出处
期刊:Applied Surface Science [Elsevier BV]
卷期号:429: 203-209 被引量:72
标识
DOI:10.1016/j.apsusc.2017.06.242
摘要

Abstract We have developed a mediatorless glucose biofuel cell based on hybrid nanoflowers incorporating enzymes including glucose oxidase (GOx), laccase, or catalase with copper phosphate, which were further mixed and compressed with conductive multi-walled carbon nanotube (CNT). The nanoflowers were simply synthesized within 5 min at room temperature using sonication method but yielded greatly improved stability as well as highly retained activity by the proper incorporation of enzyme molecules inside the flower-like structure. With glucose as biofuel, GOx and laccase nanoflowers were applied to form enzyme anode and cathode, respectively, and catalase nanoflowers were additionally employed to catalyze the decomposition of hydrogen peroxide, which may be deleterious for GOx, into oxygen and water. Using the enzyme nanoflowers-based biofuel cell system without any involved mediator, a high power density up to 200 μW cm −2 were obtained, which was approximately 80% to that from the biofuel cell system prepared with the corresponding free enzymes. Importantly, the enzyme nanoflowers-based biofuel cell maintained their initial power density over 90% during storage for two months at 4 °C, while most of the glucose biofuel cells in the literature present meaningful stability only in the range of one or two weeks. Based on this result, we expect that this simple but efficient strategy to prepare highly stable glucose biofuel cell using the rapidly-synthesized enzyme-inorganic hybrid nanoflowers can be readily extended to diverse applications in medical and environmental chemistry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
javalin发布了新的文献求助10
2秒前
访云完成签到 ,获得积分10
2秒前
猪猪女孩发布了新的文献求助10
2秒前
gaterina发布了新的文献求助10
3秒前
科研通AI5应助循环采纳,获得10
4秒前
javalin完成签到,获得积分10
7秒前
寒冷的寒安完成签到,获得积分20
8秒前
lzqlzqlzqlzqlzq完成签到,获得积分10
12秒前
13秒前
含蓄的豪英完成签到,获得积分10
13秒前
Ava应助猪猪女孩采纳,获得10
14秒前
大个应助YJ888采纳,获得10
15秒前
冰魂应助han采纳,获得10
16秒前
17秒前
19秒前
20秒前
科研顺利完成签到,获得积分10
22秒前
BK发布了新的文献求助10
22秒前
23秒前
23秒前
科研通AI5应助noNOno采纳,获得10
25秒前
早日毕业发布了新的文献求助10
25秒前
26秒前
钱多多发布了新的文献求助10
27秒前
昏睡的绍辉完成签到,获得积分10
27秒前
27秒前
27秒前
27秒前
27秒前
28秒前
28秒前
28秒前
28秒前
28秒前
28秒前
29秒前
29秒前
29秒前
29秒前
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775590
求助须知:如何正确求助?哪些是违规求助? 3321201
关于积分的说明 10203985
捐赠科研通 3036025
什么是DOI,文献DOI怎么找? 1665925
邀请新用户注册赠送积分活动 797196
科研通“疑难数据库(出版商)”最低求助积分说明 757766