Curly hard carbon derived from pistachio shells as high-performance anode materials for sodium-ion batteries

材料科学 阳极 微观结构 介电谱 化学工程 碳纤维 锂(药物) 碳化 拉曼光谱 电化学 电极 复合材料 复合数 纳米技术 扫描电子显微镜 化学 物理 工程类 内分泌学 光学 物理化学 医学
作者
Shoudong Xu,Yang Zhao,Shibin Liu,Xiaoxia Ren,Liang Chen,Wenjing Shi,Xiaomin Wang,Ding Zhang
出处
期刊:Journal of Materials Science [Springer Nature]
卷期号:53 (17): 12334-12351 被引量:67
标识
DOI:10.1007/s10853-018-2472-4
摘要

Sodium-ion batteries (SIBs) have drawn more attention to serve as one of the promising energy storage devices owing to the abundance of sodium resources and similar characters with lithium element. Hard carbon materials derived from biomass or biomass waste have been considered to act as candidate anode materials for SIBs. In this paper, we have successfully prepared curly hard carbon materials using pistachio shells as biomass template via a two-step approach including hydrothermal treatment and following a pyrolysis process at various temperatures. Physical properties of pistachio shell-derived hard carbons (PSHCs) including microstructure, morphology and pore size distribution are evaluated by X-ray diffraction, Raman spectrum and N2 sorption analysis. The PSHCs carbonized at 1000 °C (PSHC-1000) with average micropores of 0.7398 nm and larger interlayer space of the (002) crystal plane deliver the highest reversible capacity of 317 mAh g−1 at 0.1C, also show the excellent long-term cycling and rate performances. Electrochemical impedance spectroscopy technology is introduced to study the kinetics parameters during the first sodiation process of PSHC-1000 electrode, and also to compare the resistance of the charge transfer process for all the PSHCs. Results exhibit PSHC-1000 electrode with the symmetry factor of 0.1352 has the smallest charge transfer resistance, leading to more easily transportation of electrons and ions. This work can provide a simple and green route for preparation of hard carbon materials derived from biomass waste with unique morphology and microstructure which can exhibit an excellent electrochemical performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果果完成签到,获得积分10
刚刚
无情墨镜完成签到,获得积分10
刚刚
1秒前
1秒前
李健应助科研废物采纳,获得10
1秒前
FIN发布了新的文献求助500
3秒前
3秒前
lmz发布了新的文献求助10
3秒前
alunying发布了新的文献求助20
4秒前
Iris发布了新的文献求助10
4秒前
4秒前
90发布了新的文献求助10
5秒前
Criminology34应助无情墨镜采纳,获得10
5秒前
科研通AI6应助芝士采纳,获得10
6秒前
fff完成签到,获得积分10
6秒前
乐观文龙完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
LikeS关注了科研通微信公众号
9秒前
9秒前
mucheng发布了新的文献求助10
10秒前
悲哀藏在现实中完成签到,获得积分10
10秒前
10秒前
天天快乐应助wang采纳,获得10
10秒前
1812完成签到,获得积分10
10秒前
科研通AI6应助1234采纳,获得10
10秒前
赵闯完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
bdJ发布了新的文献求助10
12秒前
充电宝应助gdl采纳,获得10
12秒前
12秒前
隐形曼青应助lmz采纳,获得10
13秒前
百事可爱完成签到 ,获得积分10
13秒前
wanghuan完成签到,获得积分10
15秒前
16秒前
幸运星发布了新的文献求助10
16秒前
蓝天发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649011
求助须知:如何正确求助?哪些是违规求助? 4777097
关于积分的说明 15046363
捐赠科研通 4807843
什么是DOI,文献DOI怎么找? 2571160
邀请新用户注册赠送积分活动 1527756
关于科研通互助平台的介绍 1486683