Ship‐icing prediction methods applied in operational weather forecasting

结冰 环境科学 气象学 范畴变量 结冰条件 气候学 计算机科学 地质学 机器学习 地理
作者
Eirik Mikal Samuelsen
出处
期刊:Quarterly Journal of the Royal Meteorological Society [Wiley]
卷期号:144 (710): 13-33 被引量:9
标识
DOI:10.1002/qj.3174
摘要

Sea‐spray wetting of ships operating in cold environments imposes a great safety risk, due to icing. For this reason, marine‐icing warnings have been a part of operational weather forecasting for the last five decades, yet verification of such warnings has only been done sparingly. This article evaluates different ship‐icing methods applied in operational weather forecasting. The methods are tested against a unique dataset from a single ship type from Arctic–Norwegian waters and two screened datasets from several ship types from Alaska and the east coast of Canada. Missing and uncertain parameters in the latter datasets are supplemented by reanalysis data from different sources. Continuous icing‐rate verification and sensitivity tests are presented for the physical icing models alongside categorical icing‐rate verification, which is applied in order also to evaluate icing nomograms, which are still used by several forecasting agencies. Furthermore, a newly proposed definition of the boundaries between icing‐rate severity categories is applied in the categorical verification procedure. The overall best verification scores for continuous and categorical icing rates are obtained by the Marine Icing model for the Norwegian COast Guard (MINCOG) and a physically based Overland model, updated from its initial version with more realistic heat transfer. Finally, sensitivity tests highlight that very low air and sea‐surface temperatures rarely occur over sea areas together with high waves, due to fetch limitations, even for strong winds. For this reason, models and nomograms that do not treat wind speed and wave height separately will provide inaccurate predictions of the icing rate in such areas. Consequently, it is preferable that methods applied in operational weather forecasting are replaced with methods capable of taking this effect into account.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美丽依波发布了新的文献求助30
2秒前
852应助VPN不好用采纳,获得10
2秒前
咩咩发布了新的文献求助10
2秒前
3秒前
5秒前
5秒前
汉堡包应助孤独问旋采纳,获得30
8秒前
Wells完成签到,获得积分10
8秒前
9秒前
上官若男应助宇哈哈采纳,获得10
11秒前
白犀牛完成签到,获得积分10
12秒前
科目三应助咩咩采纳,获得10
12秒前
丘比特应助PN_Allen采纳,获得10
12秒前
royal完成签到 ,获得积分10
13秒前
Hui_2023发布了新的文献求助10
14秒前
zwzxtx完成签到 ,获得积分10
15秒前
SciGPT应助坦率初柔采纳,获得10
15秒前
可爱的函函应助鲤鱼笑白采纳,获得10
16秒前
从容芮应助包容的吐司采纳,获得10
17秒前
墨岩完成签到,获得积分20
20秒前
20秒前
23秒前
26秒前
孤独问旋发布了新的文献求助30
26秒前
27秒前
lyf完成签到,获得积分20
29秒前
华仔应助南工菜研采纳,获得10
30秒前
饭勺小子发布了新的文献求助10
32秒前
33秒前
科研通AI2S应助孤独问旋采纳,获得10
34秒前
阿伟爱打球完成签到,获得积分10
35秒前
搞怪的凡蕾完成签到,获得积分10
35秒前
斩封发布了新的文献求助10
36秒前
思源应助郑迎浪采纳,获得10
39秒前
40秒前
娃哈哈大魔王完成签到,获得积分10
40秒前
大模型应助饭勺小子采纳,获得10
41秒前
淡淡的若冰应助房山芙采纳,获得10
43秒前
45秒前
香蕉觅云应助占小瓜采纳,获得10
45秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157400
求助须知:如何正确求助?哪些是违规求助? 2808877
关于积分的说明 7878622
捐赠科研通 2467207
什么是DOI,文献DOI怎么找? 1313264
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919