过电位
析氧
化学
层状双氢氧化物
电催化剂
氢氧化物
催化作用
过渡金属
再分配(选举)
无机化学
电化学
化学工程
物理化学
电极
有机化学
工程类
政治
政治学
法学
作者
Jingfang Zhang,Jieyu Liu,Lifei Xi,Yifu Yu,Ning Chen,Shuhui Sun,Weichao Wang,Kathrin M. Lange,Bin Zhang
摘要
A fundamental understanding of the origin of oxygen evolution reaction (OER) activity of transition-metal-based electrocatalysts, especially for single precious metal atoms supported on layered double hydroxides (LDHs), is highly required for the design of efficient electrocatalysts toward further energy conversion technologies. Here, we aim toward single-atom Au supported on NiFe LDH (sAu/NiFe LDH) to clarify the activity origin of LDHs system and a 6-fold OER activity enhancement by 0.4 wt % sAu decoration. Combining with theoretical calculations, the active behavior of NiFe LDH results from the in situ generated NiFe oxyhydroxide from LDH during the OER process. With the presence of sAu, sAu/NiFe LDH possesses an overpotential of 0.21 V in contrast to the calculated result (0.18 V). We ascribe the excellent OER activity of sAu/NiFe LDH to the charge redistribution of active Fe as well as its surrounding atoms causing by the neighboring sAu on NiFe oxyhydroxide stabilized by interfacial CO32– and H2O interfacing with LDH.
科研通智能强力驱动
Strongly Powered by AbleSci AI