亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Abdominal multi-organ segmentation with organ-attention networks and statistical fusion

判别式 分割 计算机科学 人工智能 卷积神经网络 深度学习 任务(项目管理) 相似性(几何) 模式识别(心理学) 钥匙(锁) 计算机视觉 图像(数学) 计算机安全 经济 管理
作者
Yan Wang,Yuyin Zhou,Wei Shen,Seyoun Park,Elliot K. Fishman,Alan Yuille
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:55: 88-102 被引量:201
标识
DOI:10.1016/j.media.2019.04.005
摘要

Accurate and robust segmentation of abdominal organs on CT is essential for many clinical applications such as computer-aided diagnosis and computer-aided surgery. But this task is challenging due to the weak boundaries of organs, the complexity of the background, and the variable sizes of different organs. To address these challenges, we introduce a novel framework for multi-organ segmentation of abdominal regions by using organ-attention networks with reverse connections (OAN-RCs) which are applied to 2D views, of the 3D CT volume, and output estimates which are combined by statistical fusion exploiting structural similarity. More specifically, OAN is a two-stage deep convolutional network, where deep network features from the first stage are combined with the original image, in a second stage, to reduce the complex background and enhance the discriminative information for the target organs. Intuitively, OAN reduces the effect of the complex background by focusing attention so that each organ only needs to be discriminated from its local background. RCs are added to the first stage to give the lower layers more semantic information thereby enabling them to adapt to the sizes of different organs. Our networks are trained on 2D views (slices) enabling us to use holistic information and allowing efficient computation (compared to using 3D patches). To compensate for the limited cross-sectional information of the original 3D volumetric CT, e.g., the connectivity between neighbor slices, multi-sectional images are reconstructed from the three different 2D view directions. Then we combine the segmentation results from the different views using statistical fusion, with a novel term relating the structural similarity of the 2D views to the original 3D structure. To train the network and evaluate results, 13 structures were manually annotated by four human raters and confirmed by a senior expert on 236 normal cases. We tested our algorithm by 4-fold cross-validation and computed Dice–Sørensen similarity coefficients (DSC) and surface distances for evaluating our estimates of the 13 structures. Our experiments show that the proposed approach gives strong results and outperforms 2D- and 3D-patch based state-of-the-art methods in terms of DSC and mean surface distances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研米虫发布了新的文献求助10
4秒前
5秒前
AXX041795发布了新的文献求助10
12秒前
李健应助冷酷的涵易采纳,获得10
14秒前
21秒前
26秒前
FLANKS发布了新的文献求助10
31秒前
平淡的衣完成签到,获得积分10
38秒前
NexusExplorer应助AXX041795采纳,获得10
45秒前
星星科语发布了新的文献求助10
45秒前
简单发布了新的文献求助20
46秒前
魔幻的芳完成签到,获得积分10
50秒前
SSY发布了新的文献求助10
50秒前
火星上的宝马完成签到,获得积分10
53秒前
平淡的衣发布了新的文献求助20
54秒前
55秒前
悲凉的忆南完成签到,获得积分10
56秒前
量子星尘发布了新的文献求助10
1分钟前
陈旧完成签到,获得积分10
1分钟前
1分钟前
1分钟前
欣欣子完成签到,获得积分10
1分钟前
虚拟的清炎完成签到 ,获得积分10
1分钟前
sunstar完成签到,获得积分10
1分钟前
XXXXXX发布了新的文献求助10
1分钟前
yxl完成签到,获得积分10
1分钟前
可耐的盈完成签到,获得积分10
1分钟前
绿毛水怪完成签到,获得积分10
1分钟前
yg发布了新的文献求助10
1分钟前
lsc完成签到,获得积分10
1分钟前
XXXXXX完成签到,获得积分10
1分钟前
1分钟前
星星科语完成签到,获得积分20
1分钟前
小fei完成签到,获得积分10
1分钟前
andrele发布了新的文献求助10
1分钟前
麻辣薯条完成签到,获得积分10
1分钟前
hanlin给滕祥的求助进行了留言
1分钟前
时尚身影完成签到,获得积分10
1分钟前
leoduo完成签到,获得积分0
1分钟前
ryx发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723656
求助须知:如何正确求助?哪些是违规求助? 5279993
关于积分的说明 15299011
捐赠科研通 4872033
什么是DOI,文献DOI怎么找? 2616484
邀请新用户注册赠送积分活动 1566311
关于科研通互助平台的介绍 1523187