亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Abdominal multi-organ segmentation with organ-attention networks and statistical fusion

判别式 分割 计算机科学 人工智能 卷积神经网络 深度学习 任务(项目管理) 相似性(几何) 模式识别(心理学) 钥匙(锁) 计算机视觉 图像(数学) 计算机安全 经济 管理
作者
Yan Wang,Yuyin Zhou,Wei Shen,Seyoun Park,Elliot K. Fishman,Alan Yuille
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:55: 88-102 被引量:201
标识
DOI:10.1016/j.media.2019.04.005
摘要

Accurate and robust segmentation of abdominal organs on CT is essential for many clinical applications such as computer-aided diagnosis and computer-aided surgery. But this task is challenging due to the weak boundaries of organs, the complexity of the background, and the variable sizes of different organs. To address these challenges, we introduce a novel framework for multi-organ segmentation of abdominal regions by using organ-attention networks with reverse connections (OAN-RCs) which are applied to 2D views, of the 3D CT volume, and output estimates which are combined by statistical fusion exploiting structural similarity. More specifically, OAN is a two-stage deep convolutional network, where deep network features from the first stage are combined with the original image, in a second stage, to reduce the complex background and enhance the discriminative information for the target organs. Intuitively, OAN reduces the effect of the complex background by focusing attention so that each organ only needs to be discriminated from its local background. RCs are added to the first stage to give the lower layers more semantic information thereby enabling them to adapt to the sizes of different organs. Our networks are trained on 2D views (slices) enabling us to use holistic information and allowing efficient computation (compared to using 3D patches). To compensate for the limited cross-sectional information of the original 3D volumetric CT, e.g., the connectivity between neighbor slices, multi-sectional images are reconstructed from the three different 2D view directions. Then we combine the segmentation results from the different views using statistical fusion, with a novel term relating the structural similarity of the 2D views to the original 3D structure. To train the network and evaluate results, 13 structures were manually annotated by four human raters and confirmed by a senior expert on 236 normal cases. We tested our algorithm by 4-fold cross-validation and computed Dice–Sørensen similarity coefficients (DSC) and surface distances for evaluating our estimates of the 13 structures. Our experiments show that the proposed approach gives strong results and outperforms 2D- and 3D-patch based state-of-the-art methods in terms of DSC and mean surface distances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你好夏天完成签到 ,获得积分10
4秒前
Arisqotle发布了新的文献求助10
4秒前
羞涩的士晋完成签到,获得积分10
5秒前
高屋建瓴完成签到,获得积分10
7秒前
闪闪的梦柏完成签到 ,获得积分10
12秒前
zy完成签到,获得积分10
26秒前
34秒前
善学以致用应助害羞绮烟采纳,获得10
37秒前
43秒前
Jasper应助科研通管家采纳,获得10
43秒前
HaCat应助科研通管家采纳,获得10
43秒前
43秒前
43秒前
45秒前
害羞绮烟完成签到,获得积分20
48秒前
50秒前
害羞绮烟发布了新的文献求助10
51秒前
今后应助Gabriel采纳,获得10
52秒前
llpj发布了新的文献求助10
56秒前
Lin发布了新的文献求助10
1分钟前
witty完成签到,获得积分10
1分钟前
Arisqotle发布了新的文献求助10
1分钟前
1分钟前
1分钟前
波波完成签到 ,获得积分10
1分钟前
专注凌文发布了新的文献求助10
1分钟前
1分钟前
Lin完成签到,获得积分10
1分钟前
专注凌文完成签到,获得积分10
1分钟前
酷波er应助牛牛采纳,获得10
1分钟前
1分钟前
学术熊完成签到,获得积分10
1分钟前
学术熊发布了新的文献求助10
1分钟前
刘哔完成签到,获得积分10
1分钟前
haoyooo完成签到 ,获得积分10
1分钟前
NiceSunnyDay完成签到 ,获得积分10
1分钟前
诚心的访蕊完成签到 ,获得积分10
1分钟前
彭于晏应助Ziyi_Xu采纳,获得10
1分钟前
1分钟前
瓜瓜应助嘻嘻哈哈采纳,获得150
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301944
求助须知:如何正确求助?哪些是违规求助? 4449309
关于积分的说明 13848145
捐赠科研通 4335449
什么是DOI,文献DOI怎么找? 2380300
邀请新用户注册赠送积分活动 1375305
关于科研通互助平台的介绍 1341402