Abdominal multi-organ segmentation with organ-attention networks and statistical fusion

判别式 分割 计算机科学 人工智能 卷积神经网络 深度学习 任务(项目管理) 相似性(几何) 模式识别(心理学) 钥匙(锁) 计算机视觉 图像(数学) 计算机安全 经济 管理
作者
Yan Wang,Yuyin Zhou,Wei Shen,Seyoun Park,Elliot K. Fishman,Alan Yuille
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:55: 88-102 被引量:201
标识
DOI:10.1016/j.media.2019.04.005
摘要

Accurate and robust segmentation of abdominal organs on CT is essential for many clinical applications such as computer-aided diagnosis and computer-aided surgery. But this task is challenging due to the weak boundaries of organs, the complexity of the background, and the variable sizes of different organs. To address these challenges, we introduce a novel framework for multi-organ segmentation of abdominal regions by using organ-attention networks with reverse connections (OAN-RCs) which are applied to 2D views, of the 3D CT volume, and output estimates which are combined by statistical fusion exploiting structural similarity. More specifically, OAN is a two-stage deep convolutional network, where deep network features from the first stage are combined with the original image, in a second stage, to reduce the complex background and enhance the discriminative information for the target organs. Intuitively, OAN reduces the effect of the complex background by focusing attention so that each organ only needs to be discriminated from its local background. RCs are added to the first stage to give the lower layers more semantic information thereby enabling them to adapt to the sizes of different organs. Our networks are trained on 2D views (slices) enabling us to use holistic information and allowing efficient computation (compared to using 3D patches). To compensate for the limited cross-sectional information of the original 3D volumetric CT, e.g., the connectivity between neighbor slices, multi-sectional images are reconstructed from the three different 2D view directions. Then we combine the segmentation results from the different views using statistical fusion, with a novel term relating the structural similarity of the 2D views to the original 3D structure. To train the network and evaluate results, 13 structures were manually annotated by four human raters and confirmed by a senior expert on 236 normal cases. We tested our algorithm by 4-fold cross-validation and computed Dice–Sørensen similarity coefficients (DSC) and surface distances for evaluating our estimates of the 13 structures. Our experiments show that the proposed approach gives strong results and outperforms 2D- and 3D-patch based state-of-the-art methods in terms of DSC and mean surface distances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷傲雨寒完成签到,获得积分10
1秒前
yy发布了新的文献求助10
2秒前
meimale完成签到,获得积分10
2秒前
雨相所至发布了新的文献求助10
2秒前
呆萌井完成签到,获得积分10
3秒前
微笑的若魔完成签到 ,获得积分10
4秒前
北城完成签到 ,获得积分10
4秒前
束玲玲完成签到,获得积分10
4秒前
江雁完成签到,获得积分10
6秒前
满天星辰独览完成签到 ,获得积分10
6秒前
6秒前
bee完成签到 ,获得积分10
6秒前
小宁完成签到,获得积分10
8秒前
hbj完成签到,获得积分10
8秒前
张一完成签到,获得积分10
11秒前
windmill完成签到,获得积分10
11秒前
赘婿应助David采纳,获得10
12秒前
CipherSage应助是我呀吼采纳,获得10
12秒前
倪好完成签到,获得积分10
15秒前
谦让汝燕完成签到,获得积分10
15秒前
17秒前
1234@完成签到 ,获得积分10
18秒前
雨相所至完成签到,获得积分10
18秒前
研友_8oYg4n完成签到,获得积分10
18秒前
和光同尘发布了新的文献求助20
18秒前
迷路凌柏完成签到 ,获得积分10
18秒前
19秒前
冬亦发布了新的文献求助10
20秒前
清脆迎曼应助小喜采纳,获得10
20秒前
机智毛豆完成签到,获得积分10
21秒前
21秒前
jzmulyl完成签到,获得积分10
21秒前
薛乎虚完成签到 ,获得积分10
21秒前
gaogao完成签到,获得积分10
22秒前
糖炒栗子完成签到,获得积分10
23秒前
汉堡包应助马前人采纳,获得10
23秒前
m李完成签到 ,获得积分10
23秒前
吴旭东发布了新的文献求助10
24秒前
24秒前
deluohaida完成签到,获得积分20
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4570728
求助须知:如何正确求助?哪些是违规求助? 3992198
关于积分的说明 12356899
捐赠科研通 3664905
什么是DOI,文献DOI怎么找? 2019801
邀请新用户注册赠送积分活动 1054208
科研通“疑难数据库(出版商)”最低求助积分说明 941798