Abdominal multi-organ segmentation with organ-attention networks and statistical fusion

判别式 分割 计算机科学 人工智能 卷积神经网络 深度学习 任务(项目管理) 相似性(几何) 模式识别(心理学) 钥匙(锁) 计算机视觉 图像(数学) 计算机安全 经济 管理
作者
Yan Wang,Yuyin Zhou,Wei Shen,Seyoun Park,Elliot K. Fishman,Alan Yuille
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:55: 88-102 被引量:201
标识
DOI:10.1016/j.media.2019.04.005
摘要

Accurate and robust segmentation of abdominal organs on CT is essential for many clinical applications such as computer-aided diagnosis and computer-aided surgery. But this task is challenging due to the weak boundaries of organs, the complexity of the background, and the variable sizes of different organs. To address these challenges, we introduce a novel framework for multi-organ segmentation of abdominal regions by using organ-attention networks with reverse connections (OAN-RCs) which are applied to 2D views, of the 3D CT volume, and output estimates which are combined by statistical fusion exploiting structural similarity. More specifically, OAN is a two-stage deep convolutional network, where deep network features from the first stage are combined with the original image, in a second stage, to reduce the complex background and enhance the discriminative information for the target organs. Intuitively, OAN reduces the effect of the complex background by focusing attention so that each organ only needs to be discriminated from its local background. RCs are added to the first stage to give the lower layers more semantic information thereby enabling them to adapt to the sizes of different organs. Our networks are trained on 2D views (slices) enabling us to use holistic information and allowing efficient computation (compared to using 3D patches). To compensate for the limited cross-sectional information of the original 3D volumetric CT, e.g., the connectivity between neighbor slices, multi-sectional images are reconstructed from the three different 2D view directions. Then we combine the segmentation results from the different views using statistical fusion, with a novel term relating the structural similarity of the 2D views to the original 3D structure. To train the network and evaluate results, 13 structures were manually annotated by four human raters and confirmed by a senior expert on 236 normal cases. We tested our algorithm by 4-fold cross-validation and computed Dice–Sørensen similarity coefficients (DSC) and surface distances for evaluating our estimates of the 13 structures. Our experiments show that the proposed approach gives strong results and outperforms 2D- and 3D-patch based state-of-the-art methods in terms of DSC and mean surface distances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴旭完成签到,获得积分10
刚刚
牛顿的苹果完成签到,获得积分10
刚刚
1秒前
1秒前
华仔应助雾1206采纳,获得10
1秒前
科研通AI6应助mm采纳,获得10
2秒前
GSR完成签到,获得积分10
4秒前
HENHer发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
wanci应助一一采纳,获得10
6秒前
6秒前
起床做核酸完成签到,获得积分10
8秒前
9秒前
Akim应助WangPeidi采纳,获得10
9秒前
霸气映之发布了新的文献求助10
11秒前
6666发布了新的文献求助10
11秒前
幽默中分大马脸完成签到,获得积分10
11秒前
李_花花完成签到,获得积分10
12秒前
瘦瘦不斜完成签到,获得积分20
13秒前
gsq发布了新的文献求助10
14秒前
大湖小舟完成签到,获得积分10
14秒前
无花果应助HENHer采纳,获得10
14秒前
嚯嚯嚯完成签到,获得积分10
15秒前
Kelly1426完成签到,获得积分10
15秒前
清脆糖豆发布了新的文献求助10
16秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
bkagyin应助Maestro_S采纳,获得10
19秒前
科研通AI6应助载尘采纳,获得10
20秒前
22秒前
瘦瘦不斜发布了新的文献求助10
23秒前
24秒前
26秒前
小小脆脆鲨完成签到 ,获得积分10
27秒前
29秒前
量子星尘发布了新的文献求助10
30秒前
31秒前
32秒前
35秒前
量子星尘发布了新的文献求助10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675174
求助须知:如何正确求助?哪些是违规求助? 4943579
关于积分的说明 15151713
捐赠科研通 4834349
什么是DOI,文献DOI怎么找? 2589438
邀请新用户注册赠送积分活动 1543035
关于科研通互助平台的介绍 1501031