Abdominal multi-organ segmentation with organ-attention networks and statistical fusion

判别式 分割 计算机科学 人工智能 卷积神经网络 深度学习 任务(项目管理) 相似性(几何) 模式识别(心理学) 钥匙(锁) 计算机视觉 图像(数学) 计算机安全 经济 管理
作者
Yan Wang,Yuyin Zhou,Wei Shen,Seyoun Park,Elliot K. Fishman,Alan Yuille
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:55: 88-102 被引量:201
标识
DOI:10.1016/j.media.2019.04.005
摘要

Accurate and robust segmentation of abdominal organs on CT is essential for many clinical applications such as computer-aided diagnosis and computer-aided surgery. But this task is challenging due to the weak boundaries of organs, the complexity of the background, and the variable sizes of different organs. To address these challenges, we introduce a novel framework for multi-organ segmentation of abdominal regions by using organ-attention networks with reverse connections (OAN-RCs) which are applied to 2D views, of the 3D CT volume, and output estimates which are combined by statistical fusion exploiting structural similarity. More specifically, OAN is a two-stage deep convolutional network, where deep network features from the first stage are combined with the original image, in a second stage, to reduce the complex background and enhance the discriminative information for the target organs. Intuitively, OAN reduces the effect of the complex background by focusing attention so that each organ only needs to be discriminated from its local background. RCs are added to the first stage to give the lower layers more semantic information thereby enabling them to adapt to the sizes of different organs. Our networks are trained on 2D views (slices) enabling us to use holistic information and allowing efficient computation (compared to using 3D patches). To compensate for the limited cross-sectional information of the original 3D volumetric CT, e.g., the connectivity between neighbor slices, multi-sectional images are reconstructed from the three different 2D view directions. Then we combine the segmentation results from the different views using statistical fusion, with a novel term relating the structural similarity of the 2D views to the original 3D structure. To train the network and evaluate results, 13 structures were manually annotated by four human raters and confirmed by a senior expert on 236 normal cases. We tested our algorithm by 4-fold cross-validation and computed Dice–Sørensen similarity coefficients (DSC) and surface distances for evaluating our estimates of the 13 structures. Our experiments show that the proposed approach gives strong results and outperforms 2D- and 3D-patch based state-of-the-art methods in terms of DSC and mean surface distances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助机灵的南蕾采纳,获得10
1秒前
1秒前
研友完成签到,获得积分0
3秒前
yeuic完成签到 ,获得积分10
3秒前
明亮灭绝发布了新的文献求助10
3秒前
思源应助包宇采纳,获得10
4秒前
4秒前
5秒前
求助人员发布了新的文献求助10
6秒前
专一的芯发布了新的文献求助10
7秒前
cccc关注了科研通微信公众号
7秒前
8秒前
8秒前
8秒前
9秒前
111钾1111完成签到,获得积分20
9秒前
11秒前
奥特曼完成签到,获得积分10
12秒前
12秒前
陈一发布了新的文献求助10
12秒前
12秒前
干净幼翠发布了新的文献求助10
13秒前
Joy发布了新的文献求助10
13秒前
15秒前
852应助迷路柏柳采纳,获得10
15秒前
15秒前
嘿嘿发布了新的文献求助10
17秒前
17秒前
17秒前
苏11完成签到,获得积分10
17秒前
牛奶秋刀鱼完成签到 ,获得积分10
18秒前
20秒前
素律完成签到,获得积分10
21秒前
21秒前
科研通AI2S应助蜗牛采纳,获得10
21秒前
畅快的香菱完成签到,获得积分10
23秒前
潇洒愚志发布了新的文献求助10
23秒前
24秒前
Owen应助专一的芯采纳,获得10
24秒前
CipherSage应助tantan采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571758
求助须知:如何正确求助?哪些是违规求助? 4656925
关于积分的说明 14718453
捐赠科研通 4597827
什么是DOI,文献DOI怎么找? 2523359
邀请新用户注册赠送积分活动 1494204
关于科研通互助平台的介绍 1464312