Abdominal multi-organ segmentation with organ-attention networks and statistical fusion

判别式 分割 计算机科学 人工智能 卷积神经网络 深度学习 任务(项目管理) 相似性(几何) 模式识别(心理学) 钥匙(锁) 计算机视觉 图像(数学) 计算机安全 经济 管理
作者
Yan Wang,Yuyin Zhou,Wei Shen,Seyoun Park,Elliot K. Fishman,Alan Yuille
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:55: 88-102 被引量:201
标识
DOI:10.1016/j.media.2019.04.005
摘要

Accurate and robust segmentation of abdominal organs on CT is essential for many clinical applications such as computer-aided diagnosis and computer-aided surgery. But this task is challenging due to the weak boundaries of organs, the complexity of the background, and the variable sizes of different organs. To address these challenges, we introduce a novel framework for multi-organ segmentation of abdominal regions by using organ-attention networks with reverse connections (OAN-RCs) which are applied to 2D views, of the 3D CT volume, and output estimates which are combined by statistical fusion exploiting structural similarity. More specifically, OAN is a two-stage deep convolutional network, where deep network features from the first stage are combined with the original image, in a second stage, to reduce the complex background and enhance the discriminative information for the target organs. Intuitively, OAN reduces the effect of the complex background by focusing attention so that each organ only needs to be discriminated from its local background. RCs are added to the first stage to give the lower layers more semantic information thereby enabling them to adapt to the sizes of different organs. Our networks are trained on 2D views (slices) enabling us to use holistic information and allowing efficient computation (compared to using 3D patches). To compensate for the limited cross-sectional information of the original 3D volumetric CT, e.g., the connectivity between neighbor slices, multi-sectional images are reconstructed from the three different 2D view directions. Then we combine the segmentation results from the different views using statistical fusion, with a novel term relating the structural similarity of the 2D views to the original 3D structure. To train the network and evaluate results, 13 structures were manually annotated by four human raters and confirmed by a senior expert on 236 normal cases. We tested our algorithm by 4-fold cross-validation and computed Dice–Sørensen similarity coefficients (DSC) and surface distances for evaluating our estimates of the 13 structures. Our experiments show that the proposed approach gives strong results and outperforms 2D- and 3D-patch based state-of-the-art methods in terms of DSC and mean surface distances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
guan完成签到,获得积分10
刚刚
冷静的鸡完成签到,获得积分10
刚刚
刚刚
蝉鸣发布了新的文献求助10
刚刚
1秒前
苽峰完成签到,获得积分10
1秒前
细心的星月关注了科研通微信公众号
1秒前
三木发布了新的文献求助10
1秒前
1秒前
1秒前
chengzhiheng发布了新的文献求助10
2秒前
悲伤菇发布了新的文献求助20
2秒前
3秒前
點點完成签到,获得积分20
3秒前
达达完成签到,获得积分10
4秒前
speedness完成签到,获得积分10
4秒前
lgj666发布了新的文献求助10
4秒前
5秒前
zjq发布了新的文献求助10
6秒前
6秒前
李彦完成签到,获得积分10
6秒前
GOD伟发布了新的文献求助10
7秒前
小小K发布了新的文献求助10
7秒前
开放依琴完成签到,获得积分10
7秒前
7秒前
在水一方应助狗狗很纠结采纳,获得10
8秒前
默默的聪健完成签到,获得积分10
8秒前
姜夔完成签到,获得积分10
8秒前
8秒前
9秒前
无极微光应助zhenliu采纳,获得20
11秒前
Jerry发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
Miao完成签到,获得积分20
12秒前
是鱼咩咩咩完成签到,获得积分10
12秒前
Cassie完成签到,获得积分10
12秒前
zik应助三岁采纳,获得10
12秒前
14秒前
FashionBoy应助Sherry采纳,获得30
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577090
求助须知:如何正确求助?哪些是违规求助? 4662349
关于积分的说明 14741219
捐赠科研通 4602974
什么是DOI,文献DOI怎么找? 2526066
邀请新用户注册赠送积分活动 1495974
关于科研通互助平台的介绍 1465478