Comparison of various data analysis techniques applied for the classification of pharmaceutical samples by electronic tongue

电子舌 主成分分析 模式识别(心理学) 线性判别分析 人工智能 偏最小二乘回归 灵敏度(控制系统) 支持向量机 均方误差 计算机科学 数学 统计 工程类 化学 品味 食品科学 电子工程
作者
Małgorzata Wesoły,Patrycja Ciosek
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:267: 570-580 被引量:24
标识
DOI:10.1016/j.snb.2018.04.050
摘要

This work reports a critical evaluation of performance of various pattern recognition techniques applied to the classification of pharmaceutical taste-masked samples. Data obtained by potentiometric electronic tongue equipped with 16 ion-selective electrodes (ISEs) were processed by the most frequently used techniques in the analysis of electronic tongue data. Principal component analysis, partial least squares discriminant analysis, soft independent modelling of class analogy, principal component regression, support vector machine − discriminant analysis, 3-way partial least squares, K-nearest neighbours as well as combination of principal components analysis and back propagation neural networks were tested. In order to compare their ability to estimate class affinity of pharmaceutical samples, sensitivity, precision, percent of correct classification (%cc) and root mean square error (RMSE) were calculated. Additionally, 4 different kinds of data matrices: dynamic responses, stationary responses, combinations of them both, CPA values (change of the membrane potential caused by adsorption) were processed by pattern recognition techniques for the determination of the influence of the extraction of the data on the classification results. SVM-DA is proved to exhibit the best performance for the most commonly applied data extraction i.e. the steady-state response of the sensor array. Furthermore, it is shown, that including dynamic responses in the data matrix better classification abilities of the majority of the studied pattern recognition techniques are obtained. It must be underlined, that the presented findings are based on studying 399 models for whom all performance factors (sensitivity, precision, %cc, RMSE) were determined for both train and test sets to obtain reliable and repeatable results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助WW采纳,获得30
刚刚
Ashley完成签到,获得积分10
1秒前
3秒前
JJ发布了新的文献求助10
4秒前
胜天半子完成签到 ,获得积分10
6秒前
星空完成签到 ,获得积分10
7秒前
迷人的沛山完成签到 ,获得积分10
7秒前
FUNG发布了新的文献求助10
8秒前
minino完成签到 ,获得积分10
9秒前
14秒前
橘子海完成签到 ,获得积分10
18秒前
失眠的香蕉完成签到 ,获得积分10
30秒前
科研通AI2S应助FUNG采纳,获得10
32秒前
哈哈哈完成签到 ,获得积分10
32秒前
学术完成签到 ,获得积分10
33秒前
richard1357完成签到 ,获得积分10
33秒前
彭于晏应助JJ采纳,获得10
35秒前
chenbin完成签到,获得积分10
45秒前
47秒前
Chasing完成签到 ,获得积分10
47秒前
陈米花完成签到,获得积分10
49秒前
yyjl31完成签到,获得积分10
49秒前
Simon_chat完成签到,获得积分10
50秒前
Hank完成签到 ,获得积分10
50秒前
General完成签到 ,获得积分10
51秒前
吐司炸弹完成签到,获得积分10
52秒前
mayfly完成签到,获得积分10
52秒前
LT完成签到 ,获得积分10
52秒前
58秒前
玉鱼儿完成签到 ,获得积分10
1分钟前
neal仰望应助文件撤销了驳回
1分钟前
文耀海发布了新的文献求助10
1分钟前
崩溃完成签到,获得积分10
1分钟前
睡觉王完成签到 ,获得积分10
1分钟前
李爱国应助天才小熊猫采纳,获得10
1分钟前
无情的聋五完成签到 ,获得积分20
1分钟前
1分钟前
JJ发布了新的文献求助10
1分钟前
小伊001完成签到,获得积分10
1分钟前
大呲花完成签到,获得积分10
1分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793684
关于积分的说明 7807147
捐赠科研通 2450016
什么是DOI,文献DOI怎么找? 1303576
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350