Comparison of various data analysis techniques applied for the classification of pharmaceutical samples by electronic tongue

电子舌 主成分分析 模式识别(心理学) 线性判别分析 人工智能 偏最小二乘回归 灵敏度(控制系统) 支持向量机 均方误差 计算机科学 数学 统计 工程类 化学 品味 食品科学 电子工程
作者
Małgorzata Wesoły,Patrycja Ciosek
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:267: 570-580 被引量:24
标识
DOI:10.1016/j.snb.2018.04.050
摘要

This work reports a critical evaluation of performance of various pattern recognition techniques applied to the classification of pharmaceutical taste-masked samples. Data obtained by potentiometric electronic tongue equipped with 16 ion-selective electrodes (ISEs) were processed by the most frequently used techniques in the analysis of electronic tongue data. Principal component analysis, partial least squares discriminant analysis, soft independent modelling of class analogy, principal component regression, support vector machine − discriminant analysis, 3-way partial least squares, K-nearest neighbours as well as combination of principal components analysis and back propagation neural networks were tested. In order to compare their ability to estimate class affinity of pharmaceutical samples, sensitivity, precision, percent of correct classification (%cc) and root mean square error (RMSE) were calculated. Additionally, 4 different kinds of data matrices: dynamic responses, stationary responses, combinations of them both, CPA values (change of the membrane potential caused by adsorption) were processed by pattern recognition techniques for the determination of the influence of the extraction of the data on the classification results. SVM-DA is proved to exhibit the best performance for the most commonly applied data extraction i.e. the steady-state response of the sensor array. Furthermore, it is shown, that including dynamic responses in the data matrix better classification abilities of the majority of the studied pattern recognition techniques are obtained. It must be underlined, that the presented findings are based on studying 399 models for whom all performance factors (sensitivity, precision, %cc, RMSE) were determined for both train and test sets to obtain reliable and repeatable results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maodou完成签到,获得积分10
刚刚
liiiiiii发布了新的文献求助10
刚刚
1秒前
英俊的铭应助ShengzhangLiu采纳,获得10
2秒前
曾雅麟发布了新的文献求助10
2秒前
2秒前
unless完成签到,获得积分10
2秒前
某某某完成签到,获得积分10
3秒前
瑞秋完成签到,获得积分10
5秒前
6秒前
Huang完成签到 ,获得积分0
7秒前
7秒前
8秒前
含蓄文博完成签到 ,获得积分10
9秒前
orixero应助liiiiiii采纳,获得10
9秒前
11秒前
11秒前
12秒前
生动的采枫完成签到 ,获得积分10
14秒前
orixero应助aaaa采纳,获得10
14秒前
15秒前
某某某发布了新的文献求助10
16秒前
Zhupegnju发布了新的文献求助10
16秒前
肉卷发布了新的文献求助10
17秒前
过柱菜鸟发布了新的文献求助10
18秒前
momomo应助灰底爆米花采纳,获得10
18秒前
lcj完成签到,获得积分10
21秒前
科研通AI2S应助幸运鱼采纳,获得10
21秒前
天天快乐应助皮崇知采纳,获得10
21秒前
ShengzhangLiu发布了新的文献求助10
22秒前
化学胖子完成签到,获得积分10
22秒前
典雅的丹寒关注了科研通微信公众号
24秒前
艾莎莎5114完成签到,获得积分10
24秒前
25秒前
25秒前
25秒前
皮崇知完成签到,获得积分10
26秒前
orixero应助大胆的时光采纳,获得10
26秒前
26秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991995
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260801
捐赠科研通 3272413
什么是DOI,文献DOI怎么找? 1805820
邀请新用户注册赠送积分活动 882665
科研通“疑难数据库(出版商)”最低求助积分说明 809425