亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison of various data analysis techniques applied for the classification of pharmaceutical samples by electronic tongue

电子舌 主成分分析 模式识别(心理学) 线性判别分析 人工智能 偏最小二乘回归 灵敏度(控制系统) 支持向量机 均方误差 计算机科学 数学 统计 工程类 化学 品味 食品科学 电子工程
作者
Małgorzata Wesoły,Patrycja Ciosek
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:267: 570-580 被引量:24
标识
DOI:10.1016/j.snb.2018.04.050
摘要

This work reports a critical evaluation of performance of various pattern recognition techniques applied to the classification of pharmaceutical taste-masked samples. Data obtained by potentiometric electronic tongue equipped with 16 ion-selective electrodes (ISEs) were processed by the most frequently used techniques in the analysis of electronic tongue data. Principal component analysis, partial least squares discriminant analysis, soft independent modelling of class analogy, principal component regression, support vector machine − discriminant analysis, 3-way partial least squares, K-nearest neighbours as well as combination of principal components analysis and back propagation neural networks were tested. In order to compare their ability to estimate class affinity of pharmaceutical samples, sensitivity, precision, percent of correct classification (%cc) and root mean square error (RMSE) were calculated. Additionally, 4 different kinds of data matrices: dynamic responses, stationary responses, combinations of them both, CPA values (change of the membrane potential caused by adsorption) were processed by pattern recognition techniques for the determination of the influence of the extraction of the data on the classification results. SVM-DA is proved to exhibit the best performance for the most commonly applied data extraction i.e. the steady-state response of the sensor array. Furthermore, it is shown, that including dynamic responses in the data matrix better classification abilities of the majority of the studied pattern recognition techniques are obtained. It must be underlined, that the presented findings are based on studying 399 models for whom all performance factors (sensitivity, precision, %cc, RMSE) were determined for both train and test sets to obtain reliable and repeatable results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
LucyMartinez发布了新的文献求助20
26秒前
FFFFF发布了新的文献求助10
33秒前
在水一方应助读书的时候采纳,获得10
47秒前
FFFFF关注了科研通微信公众号
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
丘比特应助读书的时候采纳,获得10
1分钟前
Jasper应助读书的时候采纳,获得10
2分钟前
TBHP完成签到,获得积分10
2分钟前
科研通AI6.1应助LucyMartinez采纳,获得10
2分钟前
su完成签到 ,获得积分20
2分钟前
2分钟前
2分钟前
华仔应助读书的时候采纳,获得10
2分钟前
LucyMartinez发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
nicaicai发布了新的文献求助10
3分钟前
爆米花应助威武的元彤采纳,获得10
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得20
3分钟前
酷波er应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
桐桐应助读书的时候采纳,获得80
3分钟前
3分钟前
senpl发布了新的文献求助10
3分钟前
科研通AI6.1应助senpl采纳,获得10
3分钟前
斯文败类应助读书的时候采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739820
求助须知:如何正确求助?哪些是违规求助? 5389900
关于积分的说明 15339972
捐赠科研通 4882170
什么是DOI,文献DOI怎么找? 2624212
邀请新用户注册赠送积分活动 1572930
关于科研通互助平台的介绍 1529776