Comparison of various data analysis techniques applied for the classification of pharmaceutical samples by electronic tongue

电子舌 主成分分析 模式识别(心理学) 线性判别分析 人工智能 偏最小二乘回归 灵敏度(控制系统) 支持向量机 均方误差 计算机科学 数学 统计 工程类 化学 品味 食品科学 电子工程
作者
Małgorzata Wesoły,Patrycja Ciosek
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:267: 570-580 被引量:24
标识
DOI:10.1016/j.snb.2018.04.050
摘要

This work reports a critical evaluation of performance of various pattern recognition techniques applied to the classification of pharmaceutical taste-masked samples. Data obtained by potentiometric electronic tongue equipped with 16 ion-selective electrodes (ISEs) were processed by the most frequently used techniques in the analysis of electronic tongue data. Principal component analysis, partial least squares discriminant analysis, soft independent modelling of class analogy, principal component regression, support vector machine − discriminant analysis, 3-way partial least squares, K-nearest neighbours as well as combination of principal components analysis and back propagation neural networks were tested. In order to compare their ability to estimate class affinity of pharmaceutical samples, sensitivity, precision, percent of correct classification (%cc) and root mean square error (RMSE) were calculated. Additionally, 4 different kinds of data matrices: dynamic responses, stationary responses, combinations of them both, CPA values (change of the membrane potential caused by adsorption) were processed by pattern recognition techniques for the determination of the influence of the extraction of the data on the classification results. SVM-DA is proved to exhibit the best performance for the most commonly applied data extraction i.e. the steady-state response of the sensor array. Furthermore, it is shown, that including dynamic responses in the data matrix better classification abilities of the majority of the studied pattern recognition techniques are obtained. It must be underlined, that the presented findings are based on studying 399 models for whom all performance factors (sensitivity, precision, %cc, RMSE) were determined for both train and test sets to obtain reliable and repeatable results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢的枫叶完成签到,获得积分10
1秒前
IAN完成签到,获得积分10
2秒前
dyd发布了新的文献求助10
3秒前
大胆海瑶发布了新的文献求助10
3秒前
上官若男应助梧桐采纳,获得10
5秒前
李健的小迷弟应助ssy采纳,获得10
6秒前
窦某完成签到,获得积分10
7秒前
hhh完成签到,获得积分10
7秒前
HD关注了科研通微信公众号
8秒前
科研通AI2S应助Only采纳,获得10
8秒前
徐小锤发布了新的文献求助10
9秒前
xy完成签到,获得积分10
9秒前
机智的衣完成签到,获得积分10
13秒前
千秋入画发布了新的文献求助10
16秒前
徐小锤完成签到 ,获得积分10
16秒前
风中的巨人完成签到 ,获得积分10
17秒前
和谐又亦发布了新的文献求助10
17秒前
snowball完成签到 ,获得积分10
17秒前
17秒前
18秒前
18秒前
Dongfu_FA发布了新的文献求助10
19秒前
阳光白羊完成签到,获得积分20
20秒前
愚人完成签到,获得积分10
20秒前
多吃一口芝士完成签到 ,获得积分10
22秒前
深情安青应助zhaoa采纳,获得10
23秒前
薄志远完成签到 ,获得积分10
23秒前
无辜玉米完成签到 ,获得积分10
26秒前
ZPH完成签到,获得积分20
27秒前
想不出昵称完成签到,获得积分10
27秒前
atad2完成签到,获得积分20
27秒前
29秒前
29秒前
阿萨斯完成签到,获得积分10
29秒前
上官若男应助高挑的沛蓝采纳,获得10
31秒前
cherry_shengmo完成签到,获得积分10
31秒前
32秒前
32秒前
多吃一口芝士关注了科研通微信公众号
34秒前
34秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Treatise on Geomorphology(2nd Edition - March 1, 2022) 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3070593
求助须知:如何正确求助?哪些是违规求助? 2724610
关于积分的说明 7486613
捐赠科研通 2372004
什么是DOI,文献DOI怎么找? 1257659
科研通“疑难数据库(出版商)”最低求助积分说明 610063
版权声明 596891