Comparison of various data analysis techniques applied for the classification of pharmaceutical samples by electronic tongue

电子舌 主成分分析 模式识别(心理学) 线性判别分析 人工智能 偏最小二乘回归 灵敏度(控制系统) 支持向量机 均方误差 计算机科学 数学 统计 工程类 化学 品味 食品科学 电子工程
作者
Małgorzata Wesoły,Patrycja Ciosek
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:267: 570-580 被引量:24
标识
DOI:10.1016/j.snb.2018.04.050
摘要

This work reports a critical evaluation of performance of various pattern recognition techniques applied to the classification of pharmaceutical taste-masked samples. Data obtained by potentiometric electronic tongue equipped with 16 ion-selective electrodes (ISEs) were processed by the most frequently used techniques in the analysis of electronic tongue data. Principal component analysis, partial least squares discriminant analysis, soft independent modelling of class analogy, principal component regression, support vector machine − discriminant analysis, 3-way partial least squares, K-nearest neighbours as well as combination of principal components analysis and back propagation neural networks were tested. In order to compare their ability to estimate class affinity of pharmaceutical samples, sensitivity, precision, percent of correct classification (%cc) and root mean square error (RMSE) were calculated. Additionally, 4 different kinds of data matrices: dynamic responses, stationary responses, combinations of them both, CPA values (change of the membrane potential caused by adsorption) were processed by pattern recognition techniques for the determination of the influence of the extraction of the data on the classification results. SVM-DA is proved to exhibit the best performance for the most commonly applied data extraction i.e. the steady-state response of the sensor array. Furthermore, it is shown, that including dynamic responses in the data matrix better classification abilities of the majority of the studied pattern recognition techniques are obtained. It must be underlined, that the presented findings are based on studying 399 models for whom all performance factors (sensitivity, precision, %cc, RMSE) were determined for both train and test sets to obtain reliable and repeatable results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中的棒棒糖完成签到 ,获得积分10
2秒前
无私的听荷完成签到,获得积分10
2秒前
飘萍过客完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
皛鱼完成签到,获得积分10
6秒前
大脸猫完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
8秒前
小林神发布了新的文献求助10
8秒前
adamchris完成签到,获得积分10
8秒前
strama完成签到,获得积分10
9秒前
梓唯忧完成签到 ,获得积分10
10秒前
10秒前
pan完成签到,获得积分10
10秒前
科研通AI6.1应助michael采纳,获得30
12秒前
Cooper应助昏睡的听云采纳,获得10
12秒前
Yuan完成签到,获得积分10
13秒前
碧蓝百合发布了新的文献求助10
15秒前
小林神完成签到,获得积分10
15秒前
15秒前
强小强完成签到,获得积分10
16秒前
lbx完成签到,获得积分10
16秒前
朴素鑫完成签到,获得积分10
17秒前
QAQ小白完成签到,获得积分10
17秒前
海绵baby完成签到,获得积分10
17秒前
a成发布了新的文献求助10
17秒前
mito完成签到,获得积分10
18秒前
19秒前
鸢尾完成签到,获得积分10
19秒前
学术大亨完成签到,获得积分10
19秒前
周周南完成签到 ,获得积分10
21秒前
Dale完成签到,获得积分10
21秒前
雪白幻巧完成签到,获得积分10
23秒前
23秒前
yoimiya发布了新的文献求助10
25秒前
Silence完成签到,获得积分0
25秒前
26秒前
陈皮糖不酸完成签到,获得积分10
26秒前
晚风发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789548
求助须知:如何正确求助?哪些是违规求助? 5721282
关于积分的说明 15474982
捐赠科研通 4917368
什么是DOI,文献DOI怎么找? 2646953
邀请新用户注册赠送积分活动 1594561
关于科研通互助平台的介绍 1549099