亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison of various data analysis techniques applied for the classification of pharmaceutical samples by electronic tongue

电子舌 主成分分析 模式识别(心理学) 线性判别分析 人工智能 偏最小二乘回归 灵敏度(控制系统) 支持向量机 均方误差 计算机科学 数学 统计 工程类 化学 品味 食品科学 电子工程
作者
Małgorzata Wesoły,Patrycja Ciosek
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:267: 570-580 被引量:24
标识
DOI:10.1016/j.snb.2018.04.050
摘要

This work reports a critical evaluation of performance of various pattern recognition techniques applied to the classification of pharmaceutical taste-masked samples. Data obtained by potentiometric electronic tongue equipped with 16 ion-selective electrodes (ISEs) were processed by the most frequently used techniques in the analysis of electronic tongue data. Principal component analysis, partial least squares discriminant analysis, soft independent modelling of class analogy, principal component regression, support vector machine − discriminant analysis, 3-way partial least squares, K-nearest neighbours as well as combination of principal components analysis and back propagation neural networks were tested. In order to compare their ability to estimate class affinity of pharmaceutical samples, sensitivity, precision, percent of correct classification (%cc) and root mean square error (RMSE) were calculated. Additionally, 4 different kinds of data matrices: dynamic responses, stationary responses, combinations of them both, CPA values (change of the membrane potential caused by adsorption) were processed by pattern recognition techniques for the determination of the influence of the extraction of the data on the classification results. SVM-DA is proved to exhibit the best performance for the most commonly applied data extraction i.e. the steady-state response of the sensor array. Furthermore, it is shown, that including dynamic responses in the data matrix better classification abilities of the majority of the studied pattern recognition techniques are obtained. It must be underlined, that the presented findings are based on studying 399 models for whom all performance factors (sensitivity, precision, %cc, RMSE) were determined for both train and test sets to obtain reliable and repeatable results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yf发布了新的文献求助10
1秒前
mayocoh发布了新的文献求助10
6秒前
慕青应助清风采纳,获得10
13秒前
14秒前
嘻嘻嘻发布了新的文献求助10
19秒前
清风完成签到,获得积分20
23秒前
25秒前
31秒前
YuhengGuo应助yf采纳,获得10
32秒前
帅气凝云完成签到 ,获得积分10
33秒前
49秒前
GPTea应助科研通管家采纳,获得20
51秒前
田様应助科研通管家采纳,获得10
51秒前
激动的55完成签到 ,获得积分10
54秒前
1分钟前
rcheng发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
rcheng完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
润泽完成签到,获得积分10
1分钟前
1分钟前
orixero应助yf采纳,获得10
1分钟前
1分钟前
2分钟前
修辛完成签到 ,获得积分10
2分钟前
LMY完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
满意的梦竹完成签到,获得积分20
4分钟前
4分钟前
GingerF应助科研通管家采纳,获得50
4分钟前
GPTea应助科研通管家采纳,获得20
4分钟前
时光机带哥走完成签到 ,获得积分10
5分钟前
科研通AI5应助YuhengGuo采纳,获得10
5分钟前
JamesPei应助杜熙采纳,获得10
6分钟前
冬雪丶消融应助Desserts采纳,获得10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4973920
求助须知:如何正确求助?哪些是违规求助? 4229267
关于积分的说明 13172382
捐赠科研通 4018238
什么是DOI,文献DOI怎么找? 2198802
邀请新用户注册赠送积分活动 1211395
关于科研通互助平台的介绍 1126508