A feature extraction issue for myoelectric control based on wearable EMG sensors

计算机科学 特征提取 模式识别(心理学) 字错误率 可穿戴计算机 人工智能 奈奎斯特率 特征选择 分类器(UML) 重复性 采样(信号处理) 语音识别 支持向量机 线性判别分析 数学 统计 计算机视觉 滤波器(信号处理) 嵌入式系统
作者
Angkoon Phinyomark,Erik Scheme
标识
DOI:10.1109/sas.2018.8336753
摘要

With recent advancements in wearable sensors, wireless communication and embedded computing technologies, wearable EMG armbands are now commercially available and accessible to most laboratories. Due to the embedded system constraints, however, these armbands typically sample EMG signals at a lower frequency (e.g. 200 Hz for the Myo armband) than professional versions. It remains unclear whether existing EMG feature extraction methods, which have largely been developed based on EMG signals sampled at the Nyquist rate (generally 1000 Hz) or above, are still effective for use with these emerging lower-frequency systems. In this study, we investigate the effects of sampling rate (low: 200 Hz vs. high: 1000 Hz) on performance in classifying eight classes of hand motion in 20 able-bodied subjects for eleven commonly used time-domain features. The effect of within- and between-day variation on the performance of EMG features was also investigated. The results show that classification accuracies drop significantly with the lower sampling rate for all of the evaluated features, when using either a support vector machine or a linear discriminant analysis classifier. Furthermore, the within-class variability increased significantly with reduced sampling rate, although the level of inter-session repeatability was not affected. In comparing the performance of single features, waveform length outperformed the others for both high- and low-sampling rates. The optimal feature sets found using sequential forward selection for the two sampling rates, however, were found to be different. These results suggest that feature selection results for myoelectric control, previously determined using EMG data sampled at 1000 Hz, may not directly apply to this new generation of low-sampling rate wearable EMG sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助QXS采纳,获得10
1秒前
神勇芷巧完成签到,获得积分20
2秒前
亭2007发布了新的文献求助10
2秒前
6秒前
curry驳回了Ganlou应助
7秒前
dcr4328发布了新的文献求助10
7秒前
陈琼5完成签到,获得积分10
10秒前
huxinshinn完成签到,获得积分10
14秒前
卷卷完成签到,获得积分10
20秒前
dcr4328完成签到,获得积分10
22秒前
汉堡包应助smkmfy采纳,获得10
22秒前
WeiBao发布了新的文献求助10
22秒前
大蒜味酸奶钊完成签到 ,获得积分10
23秒前
弱水完成签到,获得积分10
23秒前
隐形曼青应助Luke采纳,获得30
27秒前
又村完成签到 ,获得积分10
27秒前
科研通AI2S应助WeiBao采纳,获得10
33秒前
彭于彦祖应助WeiBao采纳,获得30
33秒前
李健应助xushanqi采纳,获得10
39秒前
川哥完成签到,获得积分10
41秒前
42秒前
44秒前
lei.qin给lei.qin的求助进行了留言
45秒前
酷波er应助激昂的飞松采纳,获得10
46秒前
强总发布了新的文献求助10
47秒前
Hui发布了新的文献求助10
49秒前
50秒前
Hello应助ZHANGMANLI0422采纳,获得10
54秒前
xushanqi发布了新的文献求助10
55秒前
56秒前
1分钟前
1分钟前
1分钟前
yj91完成签到,获得积分10
1分钟前
Dr1由于求助违规,被管理员扣积分400
1分钟前
小马甲应助驰驰采纳,获得10
1分钟前
小马甲应助ffff采纳,获得10
1分钟前
烂漫羊青应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3327745
求助须知:如何正确求助?哪些是违规求助? 2957997
关于积分的说明 8588359
捐赠科研通 2636244
什么是DOI,文献DOI怎么找? 1442865
科研通“疑难数据库(出版商)”最低求助积分说明 668383
邀请新用户注册赠送积分活动 655506