A feature extraction issue for myoelectric control based on wearable EMG sensors

计算机科学 特征提取 模式识别(心理学) 字错误率 可穿戴计算机 人工智能 奈奎斯特率 特征选择 分类器(UML) 重复性 采样(信号处理) 语音识别 支持向量机 线性判别分析 数学 统计 计算机视觉 滤波器(信号处理) 嵌入式系统
作者
Angkoon Phinyomark,Erik Scheme
标识
DOI:10.1109/sas.2018.8336753
摘要

With recent advancements in wearable sensors, wireless communication and embedded computing technologies, wearable EMG armbands are now commercially available and accessible to most laboratories. Due to the embedded system constraints, however, these armbands typically sample EMG signals at a lower frequency (e.g. 200 Hz for the Myo armband) than professional versions. It remains unclear whether existing EMG feature extraction methods, which have largely been developed based on EMG signals sampled at the Nyquist rate (generally 1000 Hz) or above, are still effective for use with these emerging lower-frequency systems. In this study, we investigate the effects of sampling rate (low: 200 Hz vs. high: 1000 Hz) on performance in classifying eight classes of hand motion in 20 able-bodied subjects for eleven commonly used time-domain features. The effect of within- and between-day variation on the performance of EMG features was also investigated. The results show that classification accuracies drop significantly with the lower sampling rate for all of the evaluated features, when using either a support vector machine or a linear discriminant analysis classifier. Furthermore, the within-class variability increased significantly with reduced sampling rate, although the level of inter-session repeatability was not affected. In comparing the performance of single features, waveform length outperformed the others for both high- and low-sampling rates. The optimal feature sets found using sequential forward selection for the two sampling rates, however, were found to be different. These results suggest that feature selection results for myoelectric control, previously determined using EMG data sampled at 1000 Hz, may not directly apply to this new generation of low-sampling rate wearable EMG sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
junzilan发布了新的文献求助10
1秒前
ZL发布了新的文献求助10
1秒前
1秒前
亻鱼完成签到,获得积分10
1秒前
超级蘑菇完成签到 ,获得积分10
2秒前
2秒前
2秒前
congguitar完成签到,获得积分10
2秒前
3秒前
limof完成签到,获得积分20
3秒前
跳跃聪健发布了新的文献求助10
3秒前
168521kf完成签到,获得积分10
3秒前
4秒前
Avatar完成签到,获得积分10
4秒前
4秒前
小田完成签到,获得积分10
5秒前
JJJ应助大气沅采纳,获得10
5秒前
6秒前
kydd驳回了桐桐应助
6秒前
7秒前
7秒前
7秒前
英俊的铭应助洛尚采纳,获得10
7秒前
8秒前
在水一方应助Harlotte采纳,获得10
8秒前
廖天佑完成签到,获得积分0
8秒前
SweepingMonk应助梁小鑫采纳,获得10
8秒前
DTBTY完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
JACK发布了新的文献求助10
10秒前
小宋同学不能怂完成签到 ,获得积分10
10秒前
Peng丶Young完成签到,获得积分10
10秒前
10秒前
学术新星完成签到,获得积分10
10秒前
传奇3应助欢欢采纳,获得10
11秒前
littlewhite发布了新的文献求助30
11秒前
木子发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740