Automating Scoliosis Measurements in Radiographic Studies with Machine Learning: Comparing Artificial Intelligence and Clinical Reports

脊柱侧凸 柯布角 人工智能 腰椎 射线照相术 医学 质心 计算机科学 核医学 放射科 外科
作者
Audrey Ha,Bao H.,Adam L. Bartret,Charles Fang,Albert Hsiao,A.M. Lutz,Imon Banerjee,Geoffrey M. Riley,Daniel L. Rubin,Kathryn J. Stevens,Erin Wang,Shannon Wang,Christopher F. Beaulieu,Brian Hurt
出处
期刊:Journal of Digital Imaging [Springer Nature]
卷期号:35 (3): 524-533 被引量:6
标识
DOI:10.1007/s10278-022-00595-x
摘要

Scoliosis is a condition of abnormal lateral spinal curvature affecting an estimated 2 to 3% of the US population, or seven million people. The Cobb angle is the standard measurement of spinal curvature in scoliosis but is known to have high interobserver and intraobserver variability. Thus, the objective of this study was to build and validate a system for automatic quantitative evaluation of the Cobb angle and to compare AI generated and human reports in the clinical setting. After IRB was obtained, we retrospectively collected 2150 frontal view scoliosis radiographs at a tertiary referral center (January 1, 2019, to January 1, 2021, ≥ 16 years old, no hardware). The dataset was partitioned into 1505 train (70%), 215 validation (10%), and 430 test images (20%). All thoracic and lumbar vertebral bodies were segmented with bounding boxes, generating approximately 36,550 object annotations that were used to train a Faster R-CNN Resnet-101 object detection model. A controller algorithm was written to localize vertebral centroid coordinates and derive the Cobb properties (angle and endplate) of dominant and secondary curves. AI-derived Cobb angle measurements were compared to the clinical report measurements, and the Spearman rank-order demonstrated significant correlation (0.89, p < 0.001). Mean difference between AI and clinical report angle measurements was 7.34° (95% CI: 5.90–8.78°), which is similar to published literature (up to 10°). We demonstrate the feasibility of an AI system to automate measurement of level-by-level spinal angulation with performance comparable to radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
swallow完成签到,获得积分10
4秒前
苏习习发布了新的文献求助10
5秒前
领导范儿应助刘雯采纳,获得10
5秒前
景泰蓝完成签到,获得积分10
5秒前
小琦琦发布了新的文献求助10
5秒前
CipherSage应助demo1采纳,获得10
5秒前
longlong发布了新的文献求助10
6秒前
Lucas应助一二采纳,获得10
6秒前
6秒前
Asia发布了新的文献求助30
7秒前
陶醉的鱼完成签到 ,获得积分10
7秒前
7秒前
cheung完成签到,获得积分10
7秒前
搜集达人应助寻度采纳,获得10
8秒前
橘涂完成签到 ,获得积分10
8秒前
Wuwei应助傲娇书萱采纳,获得10
9秒前
9秒前
靖123456发布了新的文献求助10
10秒前
0324完成签到,获得积分10
10秒前
10秒前
派大星应助星星掉沟了采纳,获得10
10秒前
烫的汤发布了新的文献求助10
10秒前
流星完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
13秒前
lll应助JO LIN采纳,获得10
14秒前
神经刀完成签到,获得积分10
14秒前
14秒前
斯文忆梅应助沐晴采纳,获得10
14秒前
彭于晏应助奋斗寒松采纳,获得30
14秒前
LXY发布了新的文献求助10
15秒前
小白发布了新的文献求助10
16秒前
流星发布了新的文献求助10
16秒前
16秒前
17秒前
苏习习完成签到,获得积分10
17秒前
简单以冬完成签到,获得积分10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454924
求助须知:如何正确求助?哪些是违规求助? 3050185
关于积分的说明 9020562
捐赠科研通 2738826
什么是DOI,文献DOI怎么找? 1502304
科研通“疑难数据库(出版商)”最低求助积分说明 694480
邀请新用户注册赠送积分活动 693178