Machine Learning in Materials Chemistry: An Invitation

人工智能 机器学习 计算机科学 现状 化学 市场经济 经济
作者
Daniel M. Packwood,Linh Thi Hoai Nguyen,Pierluigi Cesana,Guoxi Zhang,Aleksandar Staykov,Yasuhide Fukumoto,Đình Hòa Nguyễn
出处
期刊:Machine learning with applications [Elsevier BV]
卷期号:8: 100265-100265 被引量:30
标识
DOI:10.1016/j.mlwa.2022.100265
摘要

Materials chemistry is being profoundly influenced by the uptake of machine learning methodologies. Machine learning techniques, in combination with established techniques from computational physics, promise to accelerate the discovery of new materials by elucidating complex structure–property relationships from massive material databases. Despite exciting possibilities, further methodological developments call for a greater synergism between materials chemists, physicists, and engineers on one side, with computer science and math majors on the other. In this review, we provide a non-exhaustive account of machine learning in materials chemistry for computer scientists and applied mathematicians, with an emphasis on molecule datasets and materials chemistry problems. The first part of this review provides a tutorial on how to prepare such datasets for subsequent model building, with an emphasis on the construction of feature vectors. We also provide a self-contained introduction to density functional theory, a method from computational physics which is widely used to generate datasets and compute response variables. The second part reviews two machine learning methodologies which represent the status quo in materials chemistry at present – kernelized machine learning and Bayesian machine learning – and discusses their application to real datasets. In the third part of the review, we introduce some emerging machine learning techniques which have not been widely adopted by materials scientists and therefore present potential avenues for computer science and applied math majors. In the final concluding section, we discuss some recent machine learning-based approaches to real materials discovery problems and speculate on some promising future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
碧松桥完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
呆毛王发布了新的文献求助10
1秒前
仰望星空应助xiaoxiao1992采纳,获得10
1秒前
一群牛发布了新的文献求助10
2秒前
XRWei发布了新的文献求助10
2秒前
科研通AI6应助Wangxuexin采纳,获得10
2秒前
阿晴发布了新的文献求助10
2秒前
3秒前
花花发布了新的文献求助30
3秒前
Lucas应助qianqina采纳,获得10
4秒前
5秒前
顾矜应助博思好行采纳,获得10
5秒前
5秒前
上官若男应助迷你的依凝采纳,获得10
5秒前
5秒前
5秒前
Faye完成签到 ,获得积分10
6秒前
zhaoshuo发布了新的文献求助10
6秒前
慕青应助一年5篇采纳,获得10
7秒前
7秒前
自觉水绿发布了新的文献求助10
7秒前
雨寒完成签到,获得积分10
8秒前
xixi发布了新的文献求助10
8秒前
赵科翊完成签到,获得积分10
8秒前
Breathe完成签到 ,获得积分10
9秒前
Jessie完成签到,获得积分10
9秒前
liucheng发布了新的文献求助30
10秒前
10秒前
10秒前
10秒前
HI发布了新的文献求助10
11秒前
11秒前
qianqina完成签到,获得积分10
11秒前
好好好完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
乔乔完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403