Machine Learning in Materials Chemistry: An Invitation

人工智能 机器学习 计算机科学 现状 化学 市场经济 经济
作者
Daniel M. Packwood,Linh Thi Hoai Nguyen,Pierluigi Cesana,Guoxi Zhang,Aleksandar Staykov,Yasuhide Fukumoto,Đình Hòa Nguyễn
出处
期刊:Machine learning with applications [Elsevier BV]
卷期号:8: 100265-100265 被引量:30
标识
DOI:10.1016/j.mlwa.2022.100265
摘要

Materials chemistry is being profoundly influenced by the uptake of machine learning methodologies. Machine learning techniques, in combination with established techniques from computational physics, promise to accelerate the discovery of new materials by elucidating complex structure–property relationships from massive material databases. Despite exciting possibilities, further methodological developments call for a greater synergism between materials chemists, physicists, and engineers on one side, with computer science and math majors on the other. In this review, we provide a non-exhaustive account of machine learning in materials chemistry for computer scientists and applied mathematicians, with an emphasis on molecule datasets and materials chemistry problems. The first part of this review provides a tutorial on how to prepare such datasets for subsequent model building, with an emphasis on the construction of feature vectors. We also provide a self-contained introduction to density functional theory, a method from computational physics which is widely used to generate datasets and compute response variables. The second part reviews two machine learning methodologies which represent the status quo in materials chemistry at present – kernelized machine learning and Bayesian machine learning – and discusses their application to real datasets. In the third part of the review, we introduce some emerging machine learning techniques which have not been widely adopted by materials scientists and therefore present potential avenues for computer science and applied math majors. In the final concluding section, we discuss some recent machine learning-based approaches to real materials discovery problems and speculate on some promising future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
jiujiuhuang完成签到,获得积分10
1秒前
厚朴大师完成签到,获得积分10
2秒前
争当科研巨匠完成签到,获得积分10
4秒前
6秒前
青柳完成签到 ,获得积分10
8秒前
Tong发布了新的文献求助10
10秒前
11秒前
步步高完成签到,获得积分10
13秒前
合适的寄灵完成签到 ,获得积分10
13秒前
jkaaa完成签到,获得积分10
15秒前
17秒前
ZhaoCun完成签到,获得积分10
19秒前
Cai完成签到,获得积分10
20秒前
西宁完成签到,获得积分10
20秒前
泡泡茶壶o完成签到 ,获得积分10
20秒前
无极2023完成签到 ,获得积分0
23秒前
笨笨梦松完成签到,获得积分10
23秒前
黑眼圈完成签到 ,获得积分10
23秒前
logolush完成签到 ,获得积分10
24秒前
浅浅完成签到,获得积分10
27秒前
激昂的如柏完成签到,获得积分10
31秒前
帅气的藏鸟完成签到,获得积分10
32秒前
无花果应助王九八采纳,获得10
33秒前
干净盼山完成签到,获得积分10
34秒前
清风完成签到 ,获得积分10
34秒前
啊哈啊哈额完成签到,获得积分10
36秒前
满意代萱完成签到 ,获得积分10
36秒前
追寻的亦旋完成签到 ,获得积分10
37秒前
奋斗机器猫完成签到 ,获得积分10
37秒前
一苇以航完成签到 ,获得积分10
39秒前
八八九九九1完成签到,获得积分10
39秒前
sdfdzhang完成签到 ,获得积分0
40秒前
火星人完成签到 ,获得积分10
41秒前
ZHZ完成签到,获得积分10
41秒前
42秒前
mayberichard完成签到,获得积分10
42秒前
王九八发布了新的文献求助10
44秒前
量子星尘发布了新的文献求助10
44秒前
优雅的千雁完成签到,获得积分10
44秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960158
求助须知:如何正确求助?哪些是违规求助? 3506308
关于积分的说明 11128989
捐赠科研通 3238480
什么是DOI,文献DOI怎么找? 1789744
邀请新用户注册赠送积分活动 871889
科研通“疑难数据库(出版商)”最低求助积分说明 803095