Machine Learning in Materials Chemistry: An Invitation

人工智能 机器学习 计算机科学 现状 化学 市场经济 经济
作者
Daniel M. Packwood,Linh Thi Hoai Nguyen,Pierluigi Cesana,Guoxi Zhang,Aleksandar Staykov,Yasuhide Fukumoto,Đình Hòa Nguyễn
出处
期刊:Machine learning with applications [Elsevier]
卷期号:8: 100265-100265 被引量:30
标识
DOI:10.1016/j.mlwa.2022.100265
摘要

Materials chemistry is being profoundly influenced by the uptake of machine learning methodologies. Machine learning techniques, in combination with established techniques from computational physics, promise to accelerate the discovery of new materials by elucidating complex structure–property relationships from massive material databases. Despite exciting possibilities, further methodological developments call for a greater synergism between materials chemists, physicists, and engineers on one side, with computer science and math majors on the other. In this review, we provide a non-exhaustive account of machine learning in materials chemistry for computer scientists and applied mathematicians, with an emphasis on molecule datasets and materials chemistry problems. The first part of this review provides a tutorial on how to prepare such datasets for subsequent model building, with an emphasis on the construction of feature vectors. We also provide a self-contained introduction to density functional theory, a method from computational physics which is widely used to generate datasets and compute response variables. The second part reviews two machine learning methodologies which represent the status quo in materials chemistry at present – kernelized machine learning and Bayesian machine learning – and discusses their application to real datasets. In the third part of the review, we introduce some emerging machine learning techniques which have not been widely adopted by materials scientists and therefore present potential avenues for computer science and applied math majors. In the final concluding section, we discuss some recent machine learning-based approaches to real materials discovery problems and speculate on some promising future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
嘿帕王教官完成签到,获得积分10
2秒前
2秒前
ding应助sunyanghu369采纳,获得10
2秒前
hh完成签到 ,获得积分10
2秒前
3秒前
不打游戏_发布了新的文献求助10
3秒前
ifeel_iam完成签到,获得积分10
3秒前
4秒前
ding应助开心的太清采纳,获得10
4秒前
4秒前
Taylor发布了新的文献求助10
4秒前
hee_has完成签到,获得积分10
5秒前
5秒前
lxm发布了新的文献求助10
5秒前
刺1656发布了新的文献求助10
5秒前
上官若男应助含蓄蓝天采纳,获得10
6秒前
orixero应助绛橘色的日落采纳,获得10
6秒前
小可完成签到 ,获得积分10
6秒前
pj完成签到,获得积分10
7秒前
hx完成签到 ,获得积分10
7秒前
CodeCraft应助猪猪hero采纳,获得10
8秒前
于瑜与余发布了新的文献求助10
8秒前
小狗不悲伤关注了科研通微信公众号
8秒前
8秒前
少生气完成签到,获得积分10
9秒前
Shellingford完成签到,获得积分10
9秒前
852应助huaming采纳,获得10
9秒前
10秒前
wwww发布了新的文献求助10
10秒前
10秒前
晓晓完成签到,获得积分10
10秒前
cjlinhunu发布了新的文献求助10
10秒前
赘婿应助SUMING采纳,获得10
10秒前
春风十里完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5327618
求助须知:如何正确求助?哪些是违规求助? 4467657
关于积分的说明 13901970
捐赠科研通 4360378
什么是DOI,文献DOI怎么找? 2395067
邀请新用户注册赠送积分活动 1388628
关于科研通互助平台的介绍 1359384