Machine Learning in Materials Chemistry: An Invitation

人工智能 机器学习 计算机科学 现状 化学 市场经济 经济
作者
Daniel M. Packwood,Linh Thi Hoai Nguyen,Pierluigi Cesana,Guoxi Zhang,Aleksandar Staykov,Yasuhide Fukumoto,Đình Hòa Nguyễn
出处
期刊:Machine learning with applications [Elsevier]
卷期号:8: 100265-100265 被引量:30
标识
DOI:10.1016/j.mlwa.2022.100265
摘要

Materials chemistry is being profoundly influenced by the uptake of machine learning methodologies. Machine learning techniques, in combination with established techniques from computational physics, promise to accelerate the discovery of new materials by elucidating complex structure–property relationships from massive material databases. Despite exciting possibilities, further methodological developments call for a greater synergism between materials chemists, physicists, and engineers on one side, with computer science and math majors on the other. In this review, we provide a non-exhaustive account of machine learning in materials chemistry for computer scientists and applied mathematicians, with an emphasis on molecule datasets and materials chemistry problems. The first part of this review provides a tutorial on how to prepare such datasets for subsequent model building, with an emphasis on the construction of feature vectors. We also provide a self-contained introduction to density functional theory, a method from computational physics which is widely used to generate datasets and compute response variables. The second part reviews two machine learning methodologies which represent the status quo in materials chemistry at present – kernelized machine learning and Bayesian machine learning – and discusses their application to real datasets. In the third part of the review, we introduce some emerging machine learning techniques which have not been widely adopted by materials scientists and therefore present potential avenues for computer science and applied math majors. In the final concluding section, we discuss some recent machine learning-based approaches to real materials discovery problems and speculate on some promising future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小渝快快游完成签到,获得积分20
2秒前
刻苦素完成签到,获得积分10
2秒前
云舒完成签到,获得积分10
2秒前
2秒前
3秒前
璐璐完成签到,获得积分10
3秒前
隐形曼青应助狂野世立采纳,获得10
3秒前
背后夜蓉发布了新的文献求助10
3秒前
寒冷不凡完成签到,获得积分10
3秒前
3秒前
李健的小迷弟应助阿北采纳,获得10
4秒前
阔达忆秋发布了新的文献求助10
4秒前
4秒前
高挑的保温杯完成签到,获得积分10
4秒前
华仔应助西哈哈采纳,获得10
4秒前
迷路烧鹅完成签到,获得积分10
4秒前
浮游应助6666采纳,获得10
4秒前
4秒前
tttck发布了新的文献求助10
5秒前
5秒前
jijiguo完成签到,获得积分10
5秒前
spery完成签到,获得积分10
5秒前
所所应助ts采纳,获得10
5秒前
英姑应助无情干饭崽采纳,获得10
5秒前
zmy完成签到,获得积分10
6秒前
Emma完成签到 ,获得积分10
6秒前
霂辰发布了新的文献求助10
6秒前
orixero应助一天一个苹果儿采纳,获得10
6秒前
QuickSurf发布了新的文献求助10
7秒前
Jinqiang完成签到,获得积分10
7秒前
HYLynn完成签到,获得积分10
7秒前
7秒前
13完成签到 ,获得积分10
7秒前
何洋完成签到 ,获得积分10
8秒前
8秒前
aafrr完成签到 ,获得积分10
8秒前
8秒前
8秒前
bmhs2017应助裴彤采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396060
求助须知:如何正确求助?哪些是违规求助? 4516445
关于积分的说明 14059685
捐赠科研通 4428359
什么是DOI,文献DOI怎么找? 2432060
邀请新用户注册赠送积分活动 1424236
关于科研通互助平台的介绍 1403472