RUL Prediction of Wind Turbine Gearbox Bearings Based on Self-Calibration Temporal Convolutional Network

涡轮机 卷积(计算机科学) 状态监测 方位(导航) 卷积神经网络 停工期 计算机科学 时间序列 校准 工程类 人工智能 人工神经网络 机器学习 可靠性工程 数学 统计 机械工程 电气工程
作者
Ke B. He,Zuqiang Su,Xiaoqing Tian,Hong Yu,Maolin Luo
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:43
标识
DOI:10.1109/tim.2022.3143881
摘要

The prediction of the remaining useful life (RUL) of wind turbine gearbox bearings is critical to avoid catastrophic accidents and minimize downtime. Temporal convolutional network (TCN), as a potential method of RUL prediction, utilizes dilated causal convolution to extract historic information in the time series, by which it can avoid the disadvantage of long-term dependence faced by classical recurrent neural networks (RNNs). However, a large amount of local information is lost after dilated causal convolution, restricting further improvement of accuracy in RUL prediction or even making TCN invalid when the time series data are not sufficient. To address this issue, an improved TCN denoted as self-calibration temporal convolutional network (SCTCN) is proposed for RUL prediction of wind turbine gearbox bearings, in which the dilated causal convolution of TCN is inherited to extract the long-term historic information, and the self-calibration module is used to focus on the local information in the time series. As a result, SCTCN can learn more complete historic information to improve the accuracy of RUL prediction. Bearing RUL prediction experiments on both test bench and wind turbine gearbox are performed to verify the effectiveness of the proposed method, and the experimental results show that SCTCN has higher prediction accuracy compared with other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
正直又蓝发布了新的文献求助10
刚刚
2秒前
2秒前
luoshikun完成签到,获得积分10
3秒前
彪壮的绮烟完成签到,获得积分10
5秒前
号梦发布了新的文献求助10
5秒前
飞飞呀完成签到,获得积分10
6秒前
B站萧亚轩发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
所所应助caoyulongchn采纳,获得10
7秒前
whr完成签到,获得积分10
7秒前
Roxanne完成签到,获得积分10
9秒前
源圈圈发布了新的文献求助10
12秒前
evildoer完成签到 ,获得积分10
12秒前
Membranes发布了新的文献求助30
12秒前
12秒前
Ava应助易如反掌采纳,获得10
12秒前
ANNNNN发布了新的文献求助10
13秒前
萃萃完成签到,获得积分10
17秒前
xllll完成签到,获得积分20
19秒前
大模型应助千逐采纳,获得10
19秒前
喔喔喔哦wo完成签到,获得积分10
19秒前
21秒前
今后应助DarrenVan采纳,获得10
22秒前
纪间完成签到,获得积分10
23秒前
小马甲应助研友_xnEOX8采纳,获得10
23秒前
Simen完成签到,获得积分10
24秒前
24秒前
25秒前
华仔应助超帅听枫采纳,获得10
25秒前
25秒前
Akim应助喔喔喔哦wo采纳,获得10
25秒前
25秒前
26秒前
B站萧亚轩完成签到,获得积分10
26秒前
27秒前
在水一方应助虚拟的冰双采纳,获得10
29秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Keywords: explanatory textual sequences, motivation, self-determination, academic performance, math, artificial intelligence 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267472
求助须知:如何正确求助?哪些是违规求助? 2906859
关于积分的说明 8339878
捐赠科研通 2577519
什么是DOI,文献DOI怎么找? 1400992
科研通“疑难数据库(出版商)”最低求助积分说明 654998
邀请新用户注册赠送积分活动 633917