Semi-supervised physics guided deep learning framework: An application in modeling of gallium nitride based high electron mobility transistors

人工神经网络 试验装置 深度学习 人工智能 氮化镓 试验数据 计算机科学 晶体管 一致性(知识库) 机器学习 集合(抽象数据类型) 功能(生物学) 材料科学 工程类 纳米技术 电气工程 生物 进化生物学 电压 程序设计语言 图层(电子)
作者
Shivanshu Mishra,Bipin Gaikwad,Nidhi Chaturvedi
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:132 (4)
标识
DOI:10.1063/5.0087344
摘要

This research article proposes a deep learning framework that addresses two major hurdles in adopting deep learning techniques for solving physics-based problems. One is the requirement of a large data set for training the deep learning (DL) model and another is the consistency of a DL model with the physics of a phenomenon. The framework is generic that can be applied to model a phenomenon in physics if its behavior is known. A semi-supervised physics guided neural network (SPGNN) has been developed based on our framework to demonstrate the concept. SPGNN models the I–V characteristics of gallium nitride based high electron mobility transistors (GaN HEMTs). A two-stage method has been proposed to train a DL model. In the first stage, the DL model is trained via an unsupervised learning method using the analytical physics-based model of a field-effect transistor (FET) as a loss function of the DL model that incorporates the physics of the FET in the DL model. Later, the DL model is fine-tuned with a small set of experimental data in the second stage. Performance of SPGNN has been assessed on various sizes of the data set with 100, 500, 1000, 1500, and 2000 samples. SPGNN significantly reduces the training data requirement by more than 80% and provides better performance than a traditionally trained neural network (TTNN), even for the unseen test data set. SPGNN predicts 32.4% of the unseen test data with less than 1% of error and only 0.4% of the unseen test data with more than 10% of error.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
熊大完成签到,获得积分10
1秒前
打打应助Leeu采纳,获得30
2秒前
Hannahcx发布了新的文献求助10
3秒前
3秒前
小蘑菇应助chang采纳,获得10
3秒前
wyf发布了新的文献求助10
3秒前
3秒前
Zer关闭了Zer文献求助
3秒前
wfwl完成签到,获得积分10
4秒前
调皮的秋柔完成签到,获得积分10
4秒前
4秒前
酷波er应助Solitude采纳,获得10
4秒前
小周周发布了新的文献求助10
5秒前
5秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
英俊的铭应助nzxnzx采纳,获得10
8秒前
misu完成签到,获得积分10
8秒前
Ava应助Emma采纳,获得10
9秒前
mm发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
tree发布了新的文献求助10
10秒前
QCC完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
机灵柚子发布了新的文献求助10
11秒前
没有昵称完成签到,获得积分10
12秒前
初商拾陆发布了新的文献求助10
13秒前
HTniconico完成签到 ,获得积分10
13秒前
充电宝应助田田采纳,获得10
13秒前
虚幻绿兰完成签到,获得积分10
14秒前
Hannahcx完成签到,获得积分20
14秒前
小周周完成签到,获得积分10
14秒前
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650