材料科学
复合数
光纤传感器
涂层
基质(化学分析)
光纤
纳米技术
化学工程
纤维
计算机科学
复合材料
工程类
电信
作者
Ki‐Joong Kim,Jeffrey T. Culp,James E. Ellis,Matthew D. Reeder
标识
DOI:10.1021/acs.est.2c02723
摘要
Novel chemical sensors that improve detection and quantification of CO2 are critical to ensuring safe and cost-effective monitoring of carbon storage sites. Fiber optic (FO)-based chemical sensor systems are promising field-deployable systems for real-time monitoring of CO2 in geological formations for long-range distributed sensing. In this work, a mixed-matrix composite integrated FO sensor system was developed with a purely optical readout that reliably operates as a detector for gas-phase and dissolved CO2. A mixed-matrix composite sensor coating consisting of plasmonic nanocrystals and hydrophobic zeolite embedded in a polymer matrix was integrated on the FO sensor. The mixed-matrix composite FO sensor showed excellent reversibility/stability in a high humidity environment and sensitivity to gas-phase CO2 over a large concentration range. This remarkable sensing performance was enabled by using plasmonic nanocrystals to significantly enhance the sensitivity and a hydrophobic zeolite to effectively mitigate interference from water vapor. The sensor exhibited the ability to sense CO2 in the presence of other geologically relevant gases, which is of importance for applications in geological formations. A prototype FO sensor configuration, which possesses a robust sensing capability for monitoring dissolved CO2 in natural water, was demonstrated. Reproducibility was confirmed over many cycles, both in a laboratory setting and in the field. More importantly, we demonstrated on-line monitoring capabilities with a wireless telemetry system, which transferred the data from the field to a website. The combination of outstanding CO2 sensing properties and facile coating processability makes this mixed-matrix composite FO sensor a good candidate for practical carbon storage applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI