Motion artifact removal in coronary CT angiography based on generative adversarial networks

工件(错误) 医学 神经组阅片室 图像质量 放射科 狭窄 核医学 运动(物理) 人工智能 计算机视觉 图像(数学) 计算机科学 神经学 精神科
作者
Lu Zhang,Beibei Jiang,Qiang Chen,Lingling Wang,Keke Zhao,Yaping Zhang,Rozemarijn Vliegenthart,Xueqian Xie
出处
期刊:European Radiology [Springer Nature]
卷期号:33 (1): 43-53 被引量:11
标识
DOI:10.1007/s00330-022-08971-5
摘要

Coronary motion artifacts affect the diagnostic accuracy of coronary CT angiography (CCTA), especially in the mid right coronary artery (mRCA). The purpose is to correct CCTA motion artifacts of the mRCA using a GAN (generative adversarial network).We included 313 patients with CCTA scans, who had paired motion-affected and motion-free reference images at different R-R interval phases in the same cardiac cycle and included another 53 CCTA cases with invasive coronary angiography (ICA) comparison. Pix2pix, an image-to-image conversion GAN, was trained by the motion-affected and motion-free reference pairs to generate motion-free images from the motion-affected images. Peak signal-to-noise ratio (PSNR), structural similarity (SSIM), Dice similarity coefficient (DSC), and Hausdorff distance (HD) were calculated to evaluate the image quality of GAN-generated images.At the image level, the median of PSNR, SSIM, DSC, and HD of GAN-generated images were 26.1 (interquartile: 24.4-27.5), 0.860 (0.830-0.882), 0.783 (0.714-0.825), and 4.47 (3.00-4.47), respectively, significantly better than the motion-affected images (p < 0.001). At the patient level, the image quality results were similar. GAN-generated images improved the motion artifact alleviation score (4 vs. 1, p < 0.001) and overall image quality score (4 vs. 1, p < 0.001) than those of the motion-affected images. In patients with ICA comparison, GAN-generated images achieved accuracy of 81%, 85%, and 70% in identifying no, < 50%, and ≥ 50% stenosis, respectively, higher than 66%, 72%, and 68% for the motion-affected images.Generative adversarial network-generated CCTA images greatly improved the image quality and diagnostic accuracy compared to motion-affected images.• A generative adversarial network greatly reduced motion artifacts in coronary CT angiography and improved image quality. • GAN-generated images improved diagnosis accuracy of identifying no, < 50%, and ≥ 50% stenosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hwj完成签到,获得积分10
刚刚
张世瑞发布了新的文献求助10
1秒前
Whisper发布了新的文献求助10
2秒前
Eric_G发布了新的文献求助10
3秒前
林芊万应助1122采纳,获得10
4秒前
SciGPT应助wuxunxun2015采纳,获得10
4秒前
LamChem发布了新的文献求助10
4秒前
Liz1054完成签到,获得积分10
5秒前
6秒前
大力小萱完成签到,获得积分10
6秒前
大个应助JJ采纳,获得10
10秒前
12秒前
12秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
羊羊完成签到 ,获得积分20
15秒前
linmiu完成签到,获得积分10
15秒前
zxunxia发布了新的文献求助10
16秒前
16秒前
17秒前
小陈发布了新的文献求助10
17秒前
18秒前
18秒前
001完成签到,获得积分10
19秒前
ZQP发布了新的文献求助10
20秒前
快乐丸子发布了新的文献求助10
20秒前
唉科研发布了新的文献求助10
21秒前
21秒前
21秒前
22秒前
wuxunxun2015发布了新的文献求助10
23秒前
打打应助ZQP采纳,获得10
23秒前
JJ发布了新的文献求助10
24秒前
张世瑞完成签到,获得积分10
24秒前
25秒前
SciGPT应助怕黑沛山采纳,获得10
25秒前
随便发布了新的文献求助10
26秒前
无花果应助CR7采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598832
求助须知:如何正确求助?哪些是违规求助? 4684218
关于积分的说明 14834289
捐赠科研通 4664987
什么是DOI,文献DOI怎么找? 2537445
邀请新用户注册赠送积分活动 1504928
关于科研通互助平台的介绍 1470655