Motion artifact removal in coronary CT angiography based on generative adversarial networks

工件(错误) 医学 神经组阅片室 图像质量 放射科 狭窄 核医学 运动(物理) 人工智能 计算机视觉 图像(数学) 计算机科学 神经学 精神科
作者
Lu Zhang,Beibei Jiang,Qiang Chen,Lingling Wang,Keke Zhao,Yaping Zhang,Rozemarijn Vliegenthart,Xueqian Xie
出处
期刊:European Radiology [Springer Nature]
卷期号:33 (1): 43-53 被引量:11
标识
DOI:10.1007/s00330-022-08971-5
摘要

Coronary motion artifacts affect the diagnostic accuracy of coronary CT angiography (CCTA), especially in the mid right coronary artery (mRCA). The purpose is to correct CCTA motion artifacts of the mRCA using a GAN (generative adversarial network).We included 313 patients with CCTA scans, who had paired motion-affected and motion-free reference images at different R-R interval phases in the same cardiac cycle and included another 53 CCTA cases with invasive coronary angiography (ICA) comparison. Pix2pix, an image-to-image conversion GAN, was trained by the motion-affected and motion-free reference pairs to generate motion-free images from the motion-affected images. Peak signal-to-noise ratio (PSNR), structural similarity (SSIM), Dice similarity coefficient (DSC), and Hausdorff distance (HD) were calculated to evaluate the image quality of GAN-generated images.At the image level, the median of PSNR, SSIM, DSC, and HD of GAN-generated images were 26.1 (interquartile: 24.4-27.5), 0.860 (0.830-0.882), 0.783 (0.714-0.825), and 4.47 (3.00-4.47), respectively, significantly better than the motion-affected images (p < 0.001). At the patient level, the image quality results were similar. GAN-generated images improved the motion artifact alleviation score (4 vs. 1, p < 0.001) and overall image quality score (4 vs. 1, p < 0.001) than those of the motion-affected images. In patients with ICA comparison, GAN-generated images achieved accuracy of 81%, 85%, and 70% in identifying no, < 50%, and ≥ 50% stenosis, respectively, higher than 66%, 72%, and 68% for the motion-affected images.Generative adversarial network-generated CCTA images greatly improved the image quality and diagnostic accuracy compared to motion-affected images.• A generative adversarial network greatly reduced motion artifacts in coronary CT angiography and improved image quality. • GAN-generated images improved diagnosis accuracy of identifying no, < 50%, and ≥ 50% stenosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
2秒前
lezard发布了新的文献求助10
2秒前
李敏完成签到 ,获得积分10
2秒前
bioli发布了新的文献求助10
3秒前
hs完成签到,获得积分10
3秒前
小蘑菇应助悦耳的母鸡采纳,获得10
3秒前
专注的小熊猫完成签到,获得积分10
3秒前
3秒前
3秒前
朴实剑通完成签到,获得积分10
4秒前
思源应助serpant采纳,获得10
4秒前
自然完成签到,获得积分10
4秒前
徐哈哈发布了新的文献求助10
4秒前
KingPo完成签到,获得积分10
4秒前
曾经的慕灵完成签到,获得积分10
5秒前
6秒前
Xie完成签到,获得积分10
6秒前
6秒前
天之道发布了新的文献求助10
7秒前
黎行云完成签到,获得积分10
7秒前
li发布了新的文献求助10
7秒前
laxnx发布了新的文献求助10
7秒前
可可应助十一采纳,获得10
8秒前
ai吃应助cc采纳,获得10
9秒前
9秒前
会游泳的猪完成签到,获得积分10
10秒前
Aries完成签到,获得积分10
10秒前
11秒前
11秒前
沉默的羔羊完成签到 ,获得积分20
12秒前
12秒前
12秒前
Spine Lin发布了新的文献求助10
12秒前
大模型应助lezard采纳,获得10
13秒前
songzx完成签到,获得积分20
13秒前
归玖发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531221
求助须知:如何正确求助?哪些是违规求助? 4620098
关于积分的说明 14571528
捐赠科研通 4559596
什么是DOI,文献DOI怎么找? 2498484
邀请新用户注册赠送积分活动 1478498
关于科研通互助平台的介绍 1449953