Motion artifact removal in coronary CT angiography based on generative adversarial networks

工件(错误) 医学 神经组阅片室 图像质量 放射科 狭窄 核医学 运动(物理) 人工智能 计算机视觉 图像(数学) 计算机科学 神经学 精神科
作者
Lu Zhang,Beibei Jiang,Qiang Chen,Lingling Wang,Keke Zhao,Yaping Zhang,Rozemarijn Vliegenthart,Xueqian Xie
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:33 (1): 43-53 被引量:11
标识
DOI:10.1007/s00330-022-08971-5
摘要

Coronary motion artifacts affect the diagnostic accuracy of coronary CT angiography (CCTA), especially in the mid right coronary artery (mRCA). The purpose is to correct CCTA motion artifacts of the mRCA using a GAN (generative adversarial network).We included 313 patients with CCTA scans, who had paired motion-affected and motion-free reference images at different R-R interval phases in the same cardiac cycle and included another 53 CCTA cases with invasive coronary angiography (ICA) comparison. Pix2pix, an image-to-image conversion GAN, was trained by the motion-affected and motion-free reference pairs to generate motion-free images from the motion-affected images. Peak signal-to-noise ratio (PSNR), structural similarity (SSIM), Dice similarity coefficient (DSC), and Hausdorff distance (HD) were calculated to evaluate the image quality of GAN-generated images.At the image level, the median of PSNR, SSIM, DSC, and HD of GAN-generated images were 26.1 (interquartile: 24.4-27.5), 0.860 (0.830-0.882), 0.783 (0.714-0.825), and 4.47 (3.00-4.47), respectively, significantly better than the motion-affected images (p < 0.001). At the patient level, the image quality results were similar. GAN-generated images improved the motion artifact alleviation score (4 vs. 1, p < 0.001) and overall image quality score (4 vs. 1, p < 0.001) than those of the motion-affected images. In patients with ICA comparison, GAN-generated images achieved accuracy of 81%, 85%, and 70% in identifying no, < 50%, and ≥ 50% stenosis, respectively, higher than 66%, 72%, and 68% for the motion-affected images.Generative adversarial network-generated CCTA images greatly improved the image quality and diagnostic accuracy compared to motion-affected images.• A generative adversarial network greatly reduced motion artifacts in coronary CT angiography and improved image quality. • GAN-generated images improved diagnosis accuracy of identifying no, < 50%, and ≥ 50% stenosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
rain完成签到,获得积分10
3秒前
CipherSage应助无限的含蕾采纳,获得10
3秒前
3秒前
体贴的洋葱完成签到,获得积分10
4秒前
4秒前
包容的睫毛膏完成签到,获得积分10
5秒前
小困包完成签到 ,获得积分10
5秒前
香蕉觅云应助六神曲采纳,获得10
6秒前
sonya1122完成签到,获得积分10
6秒前
虾滑丸子发布了新的文献求助10
6秒前
6秒前
sanL发布了新的文献求助10
6秒前
NicoLi发布了新的文献求助10
7秒前
8秒前
希望天下0贩的0应助qyh采纳,获得10
8秒前
jyu发布了新的文献求助10
8秒前
9秒前
淡然亦云完成签到 ,获得积分20
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
萌新完成签到 ,获得积分10
11秒前
聪明日记本完成签到,获得积分10
12秒前
丘比特应助1111采纳,获得10
12秒前
Orange应助咸鱼不翻身采纳,获得10
12秒前
13秒前
13秒前
Hello应助欣喜从波采纳,获得10
13秒前
13秒前
欸嘿发布了新的文献求助10
14秒前
大模型应助NicoLi采纳,获得10
14秒前
蟹蟹发布了新的文献求助10
14秒前
科研通AI5应助idiot采纳,获得10
15秒前
15秒前
三月雪卿完成签到,获得积分10
15秒前
drdouxia完成签到,获得积分10
16秒前
上官若男应助tiantian采纳,获得10
16秒前
16秒前
打打应助飘逸的麦片采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5088822
求助须知:如何正确求助?哪些是违规求助? 4303677
关于积分的说明 13412175
捐赠科研通 4129366
什么是DOI,文献DOI怎么找? 2261427
邀请新用户注册赠送积分活动 1265480
关于科研通互助平台的介绍 1200010