Motion artifact removal in coronary CT angiography based on generative adversarial networks

工件(错误) 医学 神经组阅片室 图像质量 放射科 狭窄 核医学 运动(物理) 人工智能 计算机视觉 图像(数学) 计算机科学 神经学 精神科
作者
Lu Zhang,Beibei Jiang,Qiang Chen,Lingling Wang,Keke Zhao,Yaping Zhang,Rozemarijn Vliegenthart,Xueqian Xie
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:33 (1): 43-53 被引量:11
标识
DOI:10.1007/s00330-022-08971-5
摘要

Coronary motion artifacts affect the diagnostic accuracy of coronary CT angiography (CCTA), especially in the mid right coronary artery (mRCA). The purpose is to correct CCTA motion artifacts of the mRCA using a GAN (generative adversarial network).We included 313 patients with CCTA scans, who had paired motion-affected and motion-free reference images at different R-R interval phases in the same cardiac cycle and included another 53 CCTA cases with invasive coronary angiography (ICA) comparison. Pix2pix, an image-to-image conversion GAN, was trained by the motion-affected and motion-free reference pairs to generate motion-free images from the motion-affected images. Peak signal-to-noise ratio (PSNR), structural similarity (SSIM), Dice similarity coefficient (DSC), and Hausdorff distance (HD) were calculated to evaluate the image quality of GAN-generated images.At the image level, the median of PSNR, SSIM, DSC, and HD of GAN-generated images were 26.1 (interquartile: 24.4-27.5), 0.860 (0.830-0.882), 0.783 (0.714-0.825), and 4.47 (3.00-4.47), respectively, significantly better than the motion-affected images (p < 0.001). At the patient level, the image quality results were similar. GAN-generated images improved the motion artifact alleviation score (4 vs. 1, p < 0.001) and overall image quality score (4 vs. 1, p < 0.001) than those of the motion-affected images. In patients with ICA comparison, GAN-generated images achieved accuracy of 81%, 85%, and 70% in identifying no, < 50%, and ≥ 50% stenosis, respectively, higher than 66%, 72%, and 68% for the motion-affected images.Generative adversarial network-generated CCTA images greatly improved the image quality and diagnostic accuracy compared to motion-affected images.• A generative adversarial network greatly reduced motion artifacts in coronary CT angiography and improved image quality. • GAN-generated images improved diagnosis accuracy of identifying no, < 50%, and ≥ 50% stenosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xx完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
小包发布了新的文献求助10
3秒前
nebula应助faye采纳,获得10
4秒前
4秒前
糯米大王完成签到,获得积分10
4秒前
SYLH应助1⑩采纳,获得20
6秒前
余额发布了新的文献求助10
6秒前
lym97完成签到 ,获得积分10
6秒前
苏曼青完成签到,获得积分10
7秒前
tonight发布了新的文献求助10
9秒前
默默问晴完成签到,获得积分10
11秒前
supergdb完成签到,获得积分10
11秒前
12秒前
djiwisksk66应助AoAoo采纳,获得10
13秒前
小圆发布了新的文献求助10
13秒前
zhikaiyici完成签到,获得积分10
14秒前
16秒前
16秒前
哔哔发布了新的文献求助10
17秒前
log发布了新的文献求助10
17秒前
轻松迎夏qqa关注了科研通微信公众号
17秒前
姿姿发布了新的文献求助10
17秒前
小蘑菇应助榴莲姑娘采纳,获得10
17秒前
Devon完成签到,获得积分10
18秒前
18秒前
铭铭就完成签到 ,获得积分10
18秒前
18秒前
Dada应助微笑的寒珊采纳,获得10
19秒前
20秒前
ha发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
斯文败类应助Angenstern采纳,获得10
22秒前
23秒前
arcremnant完成签到,获得积分10
23秒前
好多西红柿呀完成签到,获得积分10
24秒前
哔哔完成签到,获得积分20
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951130
求助须知:如何正确求助?哪些是违规求助? 3496497
关于积分的说明 11082541
捐赠科研通 3226963
什么是DOI,文献DOI怎么找? 1784094
邀请新用户注册赠送积分活动 868183
科研通“疑难数据库(出版商)”最低求助积分说明 801089