亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Motion artifact removal in coronary CT angiography based on generative adversarial networks

工件(错误) 医学 神经组阅片室 图像质量 放射科 狭窄 核医学 运动(物理) 人工智能 计算机视觉 图像(数学) 计算机科学 神经学 精神科
作者
Lu Zhang,Beibei Jiang,Qiang Chen,Lingling Wang,Keke Zhao,Yaping Zhang,Rozemarijn Vliegenthart,Xueqian Xie
出处
期刊:European Radiology [Springer Nature]
卷期号:33 (1): 43-53 被引量:11
标识
DOI:10.1007/s00330-022-08971-5
摘要

Coronary motion artifacts affect the diagnostic accuracy of coronary CT angiography (CCTA), especially in the mid right coronary artery (mRCA). The purpose is to correct CCTA motion artifacts of the mRCA using a GAN (generative adversarial network).We included 313 patients with CCTA scans, who had paired motion-affected and motion-free reference images at different R-R interval phases in the same cardiac cycle and included another 53 CCTA cases with invasive coronary angiography (ICA) comparison. Pix2pix, an image-to-image conversion GAN, was trained by the motion-affected and motion-free reference pairs to generate motion-free images from the motion-affected images. Peak signal-to-noise ratio (PSNR), structural similarity (SSIM), Dice similarity coefficient (DSC), and Hausdorff distance (HD) were calculated to evaluate the image quality of GAN-generated images.At the image level, the median of PSNR, SSIM, DSC, and HD of GAN-generated images were 26.1 (interquartile: 24.4-27.5), 0.860 (0.830-0.882), 0.783 (0.714-0.825), and 4.47 (3.00-4.47), respectively, significantly better than the motion-affected images (p < 0.001). At the patient level, the image quality results were similar. GAN-generated images improved the motion artifact alleviation score (4 vs. 1, p < 0.001) and overall image quality score (4 vs. 1, p < 0.001) than those of the motion-affected images. In patients with ICA comparison, GAN-generated images achieved accuracy of 81%, 85%, and 70% in identifying no, < 50%, and ≥ 50% stenosis, respectively, higher than 66%, 72%, and 68% for the motion-affected images.Generative adversarial network-generated CCTA images greatly improved the image quality and diagnostic accuracy compared to motion-affected images.• A generative adversarial network greatly reduced motion artifacts in coronary CT angiography and improved image quality. • GAN-generated images improved diagnosis accuracy of identifying no, < 50%, and ≥ 50% stenosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
quanjiazhi完成签到,获得积分10
刚刚
dly完成签到 ,获得积分10
2秒前
热情的橙汁完成签到,获得积分10
5秒前
8秒前
ahuyv完成签到 ,获得积分10
11秒前
yue发布了新的文献求助10
12秒前
FashionBoy应助楷楷不偷后场采纳,获得10
12秒前
leec完成签到,获得积分10
19秒前
27秒前
猴面包树发布了新的文献求助80
29秒前
Hello应助jijiguo采纳,获得10
30秒前
30秒前
30秒前
zyq发布了新的文献求助10
33秒前
36秒前
37秒前
可久斯基完成签到 ,获得积分10
37秒前
jijiguo发布了新的文献求助10
41秒前
41秒前
42秒前
45秒前
量子星尘发布了新的文献求助10
46秒前
47秒前
酷波er应助Cheny采纳,获得30
52秒前
54秒前
DChen完成签到 ,获得积分10
57秒前
承允完成签到,获得积分10
58秒前
JamesPei应助jijiguo采纳,获得10
1分钟前
充电宝应助楷楷不偷后场采纳,获得10
1分钟前
2220完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
qwwefe发布了新的文献求助10
1分钟前
火火发布了新的文献求助10
1分钟前
1分钟前
上官老师完成签到 ,获得积分10
1分钟前
1分钟前
笑笑完成签到 ,获得积分10
1分钟前
小蘑菇应助火火采纳,获得10
1分钟前
沙彬发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407659
求助须知:如何正确求助?哪些是违规求助? 4525171
关于积分的说明 14101365
捐赠科研通 4439018
什么是DOI,文献DOI怎么找? 2436551
邀请新用户注册赠送积分活动 1428528
关于科研通互助平台的介绍 1406604