Nanocarbon Based Chemiresistive Detection of Monochloramine in Water

氯胺 化学 滴定法 消毒剂 氯胺化 水溶液 安培滴定法 无机化学 环境化学 有机化学 电位滴定法 离子
作者
Md Ali Akbar,P. Ravi Selvaganapathy,Peter Kruse
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (52): 2137-2137 被引量:1
标识
DOI:10.1149/ma2022-01522137mtgabs
摘要

The use of chloramine as a disinfectant in water treatment plants is becoming popular due to its lower reactivity and higher stability than free chlorine. 1–3 Chloramines are produced by the reaction of free chlorine (HOCl, OCl - ) with nitrogen compounds to form monochloramine (NH 2 Cl), dichloramine (NHCl 2 ) or nitrogen trichloride (NCl 3 ), depending on pH and N/Cl ratio. 4 Dichloramine and nitrogen trichloride tend to create odour and taste problems in drinking water. Thus, only monochloramine is preferred for disinfection. Typically, 0.5-2 mg/L of monochloramine is maintained in the water distribution system. 5 Maintaining the concentration level of monochloramine is crucial to prevent pathogen growth in the drinking water. Currently, there is no direct method to measure chloramine. However, U.S. EPA-approved amperometric titration and colorimetric methods are available which can be used to measure total and free chlorine in aqueous media. 2 An amperometric titration method (SM 4500-Cl D) is capable of distinguishing 3 common forms of chlorine: Cl 2 / HOCl / OCl - , NH 2 Cl, and NHCl 2 . However, it fails at concentrations greater than 2 mg/L (as Cl 2 ). 2,3 Even though this method is not affected by common oxidizing agents, temperature changes, turbidity, and colour, it does require a greater degree of skill. Operationally simpler, N,N-diethyl-p-phenylenediamine (DPD) methods (ferrous and colorimetric) are used to measure free and total chlorine and then their subtraction gives the concentration of monochloramine, assuming no NHCl 2 and NCl 3 are present. DPD methods are subjected to interferences like copper, manganese (oxidized), iodide and chromate. 6 Additionally, the DPD method is not suitable for continuous monitoring of monochloramine which is essential in water distribution plants to maintain the appropriate concentration of disinfectant. 2,3,7 Here we demonstrate a chemiresistive sensor array for the continuous monitoring of chloramine in the water. Chemiresistive sensors are cheap, robust and use low power. These sensors detect an analyte through changes in the electronic properties of the transducing element. A nanocarbon network was airbrushed onto the frosted side of a microscope glass slide as the transducing element between two pencil trace contact patches. Copper tapes were placed on top of the pencil patches and then covered with a dielectric. 10 mV voltage was applied for the measurements, and the changes in resistance were measured as the analyte interacted with the transducing element. The surface of the nanocarbon network is functionalized with suitable dopant molecules by submerging the sensor in the molecule solution. This array of molecules will be able to capture the parameters to be able to classify the type of chloramine present in water. Fresh chloramine solution is prepared before each experiment by adding NH 4 Cl and NaOCl in Phosphate Buffered Saline (PBS). Sensor responses are recorded as positive current change with increasing concentrations of monochloramine. Here the hole density of the inherently p-doped substrate increases when exposed to monochloramine, and thereby resulting in increasing current. Sensors can be reset with ascorbic acid or water. Sensors were tested with 0.054 ppm to 1.437 ppm of monochloramine in pH 7.5 and 8.5. Functionalized sensor devices showed a considerably higher response than the unfunctionalized ones. The tap water sample was tested with the calibrated devices. We have therefore demonstrated a robust sensor array capable of continuously monitoring chloramine in aqueous media. References: T. L. Engelhardt and V. B. Malkov, Chlorination, chloramination and chlorine measurement, p. 1–67, (2015). US Environmental Protection Agency - Office of Water, Alternative disinfectants and oxidants Guidance manual , 1st Ed., p. 1–328, (Washington, DC) US Environmental Agency, (1999). S. H. Jenkins, Water Res. , 16, 1495–1496 (1982). T. H. Nguyen et al., Sensors Actuators, B Chem ., 187, 622–629 (2013). T. H. Nguyen et al., Sensors Actuators, B Chem. , 208, 622–627 (2015). Health Canada, Chloramines in drinking water (2019). World Health Organization, Guidelines for drinking-water quality: fourth edition incorporating the first addendum , 4th Ed + 1., Geneva: World Health Organization, (2017). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
外向的忆霜完成签到,获得积分10
2秒前
3秒前
andy完成签到,获得积分10
6秒前
7秒前
十一发布了新的文献求助10
7秒前
小象完成签到,获得积分10
10秒前
cvvvvv发布了新的文献求助10
10秒前
刘一发布了新的文献求助20
10秒前
认真的寻冬完成签到,获得积分10
11秒前
高成浩发布了新的文献求助10
12秒前
琅琊为刃完成签到,获得积分10
12秒前
慕青应助Serein采纳,获得10
12秒前
lily完成签到,获得积分10
13秒前
略略略完成签到,获得积分10
14秒前
15秒前
zzyl完成签到,获得积分10
16秒前
yif完成签到 ,获得积分10
18秒前
打打应助wfy采纳,获得10
18秒前
ares-gxd发布了新的文献求助10
19秒前
22秒前
wxiao完成签到,获得积分10
22秒前
24秒前
cvvvvv完成签到,获得积分10
25秒前
梧桐应助言亦云采纳,获得10
25秒前
26秒前
英吉利25发布了新的文献求助10
27秒前
27秒前
九零后无心完成签到,获得积分10
27秒前
ares-gxd完成签到,获得积分10
28秒前
28秒前
凉凉应助坩埚钳采纳,获得10
28秒前
机灵曼青完成签到 ,获得积分10
29秒前
chloe完成签到 ,获得积分10
29秒前
超级的丸子完成签到,获得积分10
30秒前
31秒前
31秒前
量子星尘发布了新的文献求助10
31秒前
恣意完成签到 ,获得积分10
31秒前
耍酷千山发布了新的文献求助10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010191
求助须知:如何正确求助?哪些是违规求助? 3550174
关于积分的说明 11305110
捐赠科研通 3284653
什么是DOI,文献DOI怎么找? 1810748
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811451