Nanocarbon Based Chemiresistive Detection of Monochloramine in Water

氯胺 化学 滴定法 消毒剂 氯胺化 水溶液 安培滴定法 无机化学 环境化学 有机化学 电位滴定法 离子
作者
Md Ali Akbar,P. Ravi Selvaganapathy,Peter Kruse
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (52): 2137-2137 被引量:1
标识
DOI:10.1149/ma2022-01522137mtgabs
摘要

The use of chloramine as a disinfectant in water treatment plants is becoming popular due to its lower reactivity and higher stability than free chlorine. 1–3 Chloramines are produced by the reaction of free chlorine (HOCl, OCl - ) with nitrogen compounds to form monochloramine (NH 2 Cl), dichloramine (NHCl 2 ) or nitrogen trichloride (NCl 3 ), depending on pH and N/Cl ratio. 4 Dichloramine and nitrogen trichloride tend to create odour and taste problems in drinking water. Thus, only monochloramine is preferred for disinfection. Typically, 0.5-2 mg/L of monochloramine is maintained in the water distribution system. 5 Maintaining the concentration level of monochloramine is crucial to prevent pathogen growth in the drinking water. Currently, there is no direct method to measure chloramine. However, U.S. EPA-approved amperometric titration and colorimetric methods are available which can be used to measure total and free chlorine in aqueous media. 2 An amperometric titration method (SM 4500-Cl D) is capable of distinguishing 3 common forms of chlorine: Cl 2 / HOCl / OCl - , NH 2 Cl, and NHCl 2 . However, it fails at concentrations greater than 2 mg/L (as Cl 2 ). 2,3 Even though this method is not affected by common oxidizing agents, temperature changes, turbidity, and colour, it does require a greater degree of skill. Operationally simpler, N,N-diethyl-p-phenylenediamine (DPD) methods (ferrous and colorimetric) are used to measure free and total chlorine and then their subtraction gives the concentration of monochloramine, assuming no NHCl 2 and NCl 3 are present. DPD methods are subjected to interferences like copper, manganese (oxidized), iodide and chromate. 6 Additionally, the DPD method is not suitable for continuous monitoring of monochloramine which is essential in water distribution plants to maintain the appropriate concentration of disinfectant. 2,3,7 Here we demonstrate a chemiresistive sensor array for the continuous monitoring of chloramine in the water. Chemiresistive sensors are cheap, robust and use low power. These sensors detect an analyte through changes in the electronic properties of the transducing element. A nanocarbon network was airbrushed onto the frosted side of a microscope glass slide as the transducing element between two pencil trace contact patches. Copper tapes were placed on top of the pencil patches and then covered with a dielectric. 10 mV voltage was applied for the measurements, and the changes in resistance were measured as the analyte interacted with the transducing element. The surface of the nanocarbon network is functionalized with suitable dopant molecules by submerging the sensor in the molecule solution. This array of molecules will be able to capture the parameters to be able to classify the type of chloramine present in water. Fresh chloramine solution is prepared before each experiment by adding NH 4 Cl and NaOCl in Phosphate Buffered Saline (PBS). Sensor responses are recorded as positive current change with increasing concentrations of monochloramine. Here the hole density of the inherently p-doped substrate increases when exposed to monochloramine, and thereby resulting in increasing current. Sensors can be reset with ascorbic acid or water. Sensors were tested with 0.054 ppm to 1.437 ppm of monochloramine in pH 7.5 and 8.5. Functionalized sensor devices showed a considerably higher response than the unfunctionalized ones. The tap water sample was tested with the calibrated devices. We have therefore demonstrated a robust sensor array capable of continuously monitoring chloramine in aqueous media. References: T. L. Engelhardt and V. B. Malkov, Chlorination, chloramination and chlorine measurement, p. 1–67, (2015). US Environmental Protection Agency - Office of Water, Alternative disinfectants and oxidants Guidance manual , 1st Ed., p. 1–328, (Washington, DC) US Environmental Agency, (1999). S. H. Jenkins, Water Res. , 16, 1495–1496 (1982). T. H. Nguyen et al., Sensors Actuators, B Chem ., 187, 622–629 (2013). T. H. Nguyen et al., Sensors Actuators, B Chem. , 208, 622–627 (2015). Health Canada, Chloramines in drinking water (2019). World Health Organization, Guidelines for drinking-water quality: fourth edition incorporating the first addendum , 4th Ed + 1., Geneva: World Health Organization, (2017). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小马宝莉完成签到,获得积分10
刚刚
晓伟完成签到,获得积分10
1秒前
2秒前
大个应助林山相晚暮采纳,获得10
2秒前
tracy完成签到,获得积分10
2秒前
2秒前
jasmine完成签到,获得积分10
2秒前
久而久之完成签到 ,获得积分10
2秒前
十一发布了新的文献求助10
3秒前
4秒前
DNA甲基转移酶完成签到,获得积分10
4秒前
嗯哼应助淡然凌兰采纳,获得20
4秒前
4秒前
4秒前
曾经如凡发布了新的文献求助30
4秒前
4秒前
小二郎应助蘑菇采纳,获得10
5秒前
5秒前
wang5945发布了新的文献求助10
5秒前
5秒前
zhuo完成签到,获得积分10
5秒前
zcbb完成签到,获得积分10
5秒前
ccyy完成签到 ,获得积分10
6秒前
糖糖糖唐完成签到,获得积分10
6秒前
Xx完成签到,获得积分20
6秒前
不晚发布了新的文献求助10
6秒前
keroro完成签到,获得积分10
7秒前
ning发布了新的文献求助10
7秒前
南柯完成签到,获得积分10
8秒前
Fengliguantou完成签到,获得积分20
8秒前
8秒前
兮兮完成签到,获得积分10
8秒前
9秒前
黄子发布了新的文献求助10
9秒前
林山相晚暮完成签到,获得积分20
9秒前
研友_8DoPDZ完成签到,获得积分10
9秒前
dyj发布了新的文献求助10
9秒前
9秒前
小心科研发布了新的文献求助10
9秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
A Dissection Guide & Atlas to the Rabbit 600
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 500
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3104211
求助须知:如何正确求助?哪些是违规求助? 2755498
关于积分的说明 7633314
捐赠科研通 2408986
什么是DOI,文献DOI怎么找? 1278114
科研通“疑难数据库(出版商)”最低求助积分说明 617284
版权声明 599207