已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Mixed Opinion Dynamics Based on DeGroot Model and Hegselmann–Krause Model in Social Networks

相似性(几何) 计算机科学 复杂网络 聚类系数 随机图 意见领导 社交网络(社会语言学) 聚类分析 网络动力学 人工智能 数学 理论计算机科学 社会化媒体 离散数学 图形 万维网 图像(数学) 公共关系 政治学
作者
Zhibin Wu,Qinyue Zhou,Yucheng Dong,Jiuping Xu,Abdulrahman Altalhi,Francisco Herrera
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (1): 296-308 被引量:37
标识
DOI:10.1109/tsmc.2022.3178230
摘要

Most existing opinion formation processes apply one opinion dynamics model. However, this article combines opinion formation and complex networks to innovatively develop two new opinion dynamics models to more realistically describe the opinion evolution process: 1) an opinion similarity mixed (OSM) model and 2) a structural similarity mixed (SSM) model, both of which include characteristics from the DeGroot model and the Hegselmann–Krause bounded confidence model. In addition, the strong and weak relations between individuals are considered. The network dynamically changes by two developed network updating algorithms based on opinion similarity and structural similarity. Simulations are then conducted using artificial and real-world networks, which are Erdös-Rényi random networks, random regular networks, scale-free networks, and the Twitter network. It is found that compared with static networks, the opinion evolution in dynamic networks produces fewer opinion clusters and smaller opinion variances. The dynamic network mechanism reduces the weak relations between agents and improves the global clustering coefficient in the ER random networks but not in the Twitter network, which means that the network topology has an impact on results. Therefore, it is concluded that agents’ subjective behaviors significantly influence the outcome of opinion evolution and networks, which is consistent with real life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
成诗怡完成签到,获得积分10
3秒前
nil完成签到,获得积分10
4秒前
4秒前
yc完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
10秒前
Dr-Luo发布了新的文献求助10
10秒前
马LLLLL发布了新的文献求助10
14秒前
Aaa_12012完成签到,获得积分10
14秒前
⊙▽⊙发布了新的文献求助10
14秒前
tututu发布了新的文献求助10
15秒前
双黄应助小杏韵采纳,获得10
16秒前
17秒前
北极星完成签到,获得积分10
20秒前
20秒前
淡然白安完成签到,获得积分10
21秒前
北极星发布了新的文献求助10
23秒前
23秒前
24秒前
25秒前
liushuyu发布了新的文献求助30
28秒前
28秒前
30秒前
淼淼之锋完成签到 ,获得积分10
31秒前
35秒前
35秒前
乐乐应助油个大饼呜呜呜采纳,获得10
36秒前
DX发布了新的文献求助10
36秒前
39秒前
bxxxxx完成签到,获得积分10
40秒前
41秒前
圆圆完成签到 ,获得积分10
43秒前
44秒前
47秒前
希望天下0贩的0应助阿晨采纳,获得10
47秒前
48秒前
49秒前
50秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248577
求助须知:如何正确求助?哪些是违规求助? 2892044
关于积分的说明 8269473
捐赠科研通 2560089
什么是DOI,文献DOI怎么找? 1388851
科研通“疑难数据库(出版商)”最低求助积分说明 650913
邀请新用户注册赠送积分活动 627798