Mixed Opinion Dynamics Based on DeGroot Model and Hegselmann–Krause Model in Social Networks

相似性(几何) 计算机科学 复杂网络 聚类系数 随机图 意见领导 社交网络(社会语言学) 聚类分析 网络动力学 人工智能 数学 理论计算机科学 社会化媒体 离散数学 图形 万维网 图像(数学) 公共关系 政治学
作者
Zhibin Wu,Qinyue Zhou,Yucheng Dong,Jiuping Xu,Abdulrahman Altalhi,Francisco Herrera
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (1): 296-308 被引量:37
标识
DOI:10.1109/tsmc.2022.3178230
摘要

Most existing opinion formation processes apply one opinion dynamics model. However, this article combines opinion formation and complex networks to innovatively develop two new opinion dynamics models to more realistically describe the opinion evolution process: 1) an opinion similarity mixed (OSM) model and 2) a structural similarity mixed (SSM) model, both of which include characteristics from the DeGroot model and the Hegselmann–Krause bounded confidence model. In addition, the strong and weak relations between individuals are considered. The network dynamically changes by two developed network updating algorithms based on opinion similarity and structural similarity. Simulations are then conducted using artificial and real-world networks, which are Erdös-Rényi random networks, random regular networks, scale-free networks, and the Twitter network. It is found that compared with static networks, the opinion evolution in dynamic networks produces fewer opinion clusters and smaller opinion variances. The dynamic network mechanism reduces the weak relations between agents and improves the global clustering coefficient in the ER random networks but not in the Twitter network, which means that the network topology has an impact on results. Therefore, it is concluded that agents’ subjective behaviors significantly influence the outcome of opinion evolution and networks, which is consistent with real life.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助彬彬采纳,获得10
1秒前
七七发布了新的文献求助10
1秒前
1秒前
搜集达人应助123采纳,获得10
1秒前
英俊的铭应助yao采纳,获得30
2秒前
爆米花应助无所归兮采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
tangyy1205完成签到,获得积分10
2秒前
3秒前
可爱绮完成签到,获得积分10
3秒前
3秒前
大气的裙子完成签到,获得积分10
3秒前
牧海冬完成签到,获得积分10
3秒前
4秒前
lzy完成签到 ,获得积分10
4秒前
orixero应助geyunjie采纳,获得10
5秒前
5秒前
SunXinwei完成签到,获得积分10
6秒前
6秒前
wanci发布了新的文献求助20
6秒前
6秒前
Stella应助852采纳,获得10
7秒前
Zzz驳回了戴云溥应助
7秒前
友好灵松完成签到,获得积分10
7秒前
8秒前
8秒前
jun发布了新的文献求助10
8秒前
8秒前
灵巧谷波发布了新的文献求助10
9秒前
9秒前
freebird应助BEIBEI采纳,获得10
10秒前
10秒前
10秒前
HopeLee发布了新的文献求助10
10秒前
SccS发布了新的文献求助10
10秒前
拼搏蜗牛发布了新的文献求助10
11秒前
朱凌娇完成签到,获得积分10
11秒前
ji发布了新的文献求助10
11秒前
kryie发布了新的文献求助10
11秒前
12秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582358
求助须知:如何正确求助?哪些是违规求助? 4666421
关于积分的说明 14762778
捐赠科研通 4608475
什么是DOI,文献DOI怎么找? 2528699
邀请新用户注册赠送积分活动 1498050
关于科研通互助平台的介绍 1466736