Confederated learning in healthcare: training machine learning models using disconnected data separated by individual, data type and identity for Large-Scale Health System Intelligence

机器学习 人工智能 计算机科学 医疗保健 在线机器学习 学习曲线 匹配(统计) 无监督学习
作者
Dianbo Liu,Kathe Fox,Griffin Weber,Tim Miller
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:: 104151-104151
标识
DOI:10.1016/j.jbi.2022.104151
摘要

A patient's health information is generally fragmented across silos because it follows how care is delivered: multiple providers in multiple settings. Though it is technically feasible to reunite data for analysis in a manner that underpins a rapid learning healthcare system, privacy concerns and regulatory barriers limit data centralization for this purpose.Machine learning can be conducted in a federated manner on patient datasets with the same set of variables but separated across storage. But federated learning cannot handle the situation where different data types for a given patient are separated vertically across different organizations and when patient ID matching across different institutions is difficult. We call methods that enable machine learning model training on data separated by two or more dimensions "confederated machine learning", which we aim to develop in this study.We propose and evaluate confederated learning for training machine learning models to stratify the risk of several diseases among silos when data are horizontally separated by individual, vertically separated by data type, and separated by identity without patient ID matching. The confederated learning method can be intuitively understood as a distributed learning method with representation learning, generative model, imputation method and data augmentation elements.Our confederated learning method achieves AUCROC (Area Under The Curve Receiver Operating Characteristics) of 0.787 for diabetes prediction, 0.718 for psychological disorders prediction, and 0.698 for Ischemic heart disease prediction using nationwide health insurance claims.Our proposed confederated learning method successfully trained machine learning models on health insurance data separated by two or more dimensions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助木易雨山采纳,获得10
1秒前
1秒前
浩浩发布了新的文献求助30
1秒前
ixcyyy发布了新的文献求助10
3秒前
诸葛高澜完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
情怀应助狂野未来采纳,获得10
4秒前
lll发布了新的文献求助10
4秒前
哈哈发布了新的文献求助10
4秒前
4秒前
J佳佳佳佳佳哥完成签到,获得积分10
5秒前
Grondwet完成签到,获得积分10
6秒前
6秒前
瑞芬太尼完成签到,获得积分10
6秒前
FashionBoy应助阔达小懒虫采纳,获得10
6秒前
6秒前
青青发布了新的文献求助10
7秒前
7秒前
8秒前
米玄完成签到,获得积分10
8秒前
香蕉觅云应助猪猪hero采纳,获得10
9秒前
9秒前
cloudss发布了新的文献求助10
9秒前
多多发布了新的文献求助10
10秒前
wusuowei发布了新的文献求助10
10秒前
10秒前
Hello应助北北北采纳,获得10
11秒前
啊啊啊完成签到,获得积分10
11秒前
11秒前
ss发布了新的文献求助10
12秒前
YH_Z发布了新的文献求助10
12秒前
12秒前
UHPC完成签到,获得积分10
13秒前
小鱼干发布了新的文献求助10
14秒前
木火发布了新的文献求助10
14秒前
oiinn发布了新的文献求助10
16秒前
power完成签到,获得积分10
16秒前
张北海完成签到 ,获得积分10
16秒前
16秒前
KNOW发布了新的文献求助10
17秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442878
求助须知:如何正确求助?哪些是违规求助? 4552922
关于积分的说明 14239742
捐赠科研通 4474315
什么是DOI,文献DOI怎么找? 2451988
邀请新用户注册赠送积分活动 1442905
关于科研通互助平台的介绍 1418632