Confederated learning in healthcare: training machine learning models using disconnected data separated by individual, data type and identity for Large-Scale Health System Intelligence

机器学习 人工智能 计算机科学 医疗保健 在线机器学习 学习曲线 匹配(统计) 无监督学习
作者
Dianbo Liu,Kathe Fox,Griffin Weber,Tim Miller
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:: 104151-104151
标识
DOI:10.1016/j.jbi.2022.104151
摘要

A patient's health information is generally fragmented across silos because it follows how care is delivered: multiple providers in multiple settings. Though it is technically feasible to reunite data for analysis in a manner that underpins a rapid learning healthcare system, privacy concerns and regulatory barriers limit data centralization for this purpose.Machine learning can be conducted in a federated manner on patient datasets with the same set of variables but separated across storage. But federated learning cannot handle the situation where different data types for a given patient are separated vertically across different organizations and when patient ID matching across different institutions is difficult. We call methods that enable machine learning model training on data separated by two or more dimensions "confederated machine learning", which we aim to develop in this study.We propose and evaluate confederated learning for training machine learning models to stratify the risk of several diseases among silos when data are horizontally separated by individual, vertically separated by data type, and separated by identity without patient ID matching. The confederated learning method can be intuitively understood as a distributed learning method with representation learning, generative model, imputation method and data augmentation elements.Our confederated learning method achieves AUCROC (Area Under The Curve Receiver Operating Characteristics) of 0.787 for diabetes prediction, 0.718 for psychological disorders prediction, and 0.698 for Ischemic heart disease prediction using nationwide health insurance claims.Our proposed confederated learning method successfully trained machine learning models on health insurance data separated by two or more dimensions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy关注了科研通微信公众号
刚刚
比亚迪士尼在逃公主完成签到,获得积分10
1秒前
123完成签到,获得积分10
2秒前
ccc完成签到,获得积分10
2秒前
OnionJJ完成签到,获得积分10
3秒前
甜甜圈发布了新的文献求助30
5秒前
hugebear完成签到,获得积分10
5秒前
Forever完成签到,获得积分10
6秒前
我要发Nture完成签到,获得积分10
6秒前
一颗红葡萄完成签到 ,获得积分10
8秒前
李怀玉完成签到,获得积分10
10秒前
阿浮完成签到 ,获得积分10
10秒前
连难胜完成签到 ,获得积分10
10秒前
清风醉完成签到,获得积分10
11秒前
cx完成签到,获得积分10
11秒前
12秒前
彳亍完成签到,获得积分10
13秒前
Java完成签到,获得积分10
13秒前
13秒前
茅十八完成签到,获得积分10
14秒前
子车茗应助聪明的宛菡采纳,获得10
14秒前
齐桓公完成签到,获得积分10
14秒前
qunli完成签到,获得积分10
15秒前
芬达发布了新的文献求助10
15秒前
17秒前
AteeqBaloch完成签到,获得积分10
17秒前
蔡从安发布了新的文献求助10
17秒前
阿荷荷完成签到 ,获得积分20
17秒前
源来是洲董完成签到,获得积分10
18秒前
19秒前
hanyang965完成签到,获得积分10
19秒前
自觉的宇完成签到 ,获得积分10
20秒前
20秒前
simon发布了新的文献求助10
20秒前
20秒前
523完成签到,获得积分10
21秒前
Likz完成签到,获得积分10
21秒前
张清泉发布了新的文献求助10
22秒前
无辜的兔子完成签到,获得积分10
23秒前
dwls完成签到,获得积分10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150658
求助须知:如何正确求助?哪些是违规求助? 2802207
关于积分的说明 7846456
捐赠科研通 2459547
什么是DOI,文献DOI怎么找? 1309286
科研通“疑难数据库(出版商)”最低求助积分说明 628821
版权声明 601757