Confederated learning in healthcare: training machine learning models using disconnected data separated by individual, data type and identity for Large-Scale Health System Intelligence

机器学习 人工智能 计算机科学 医疗保健 在线机器学习 学习曲线 匹配(统计) 无监督学习
作者
Dianbo Liu,Kathe Fox,Griffin Weber,Tim Miller
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:: 104151-104151
标识
DOI:10.1016/j.jbi.2022.104151
摘要

A patient's health information is generally fragmented across silos because it follows how care is delivered: multiple providers in multiple settings. Though it is technically feasible to reunite data for analysis in a manner that underpins a rapid learning healthcare system, privacy concerns and regulatory barriers limit data centralization for this purpose.Machine learning can be conducted in a federated manner on patient datasets with the same set of variables but separated across storage. But federated learning cannot handle the situation where different data types for a given patient are separated vertically across different organizations and when patient ID matching across different institutions is difficult. We call methods that enable machine learning model training on data separated by two or more dimensions "confederated machine learning", which we aim to develop in this study.We propose and evaluate confederated learning for training machine learning models to stratify the risk of several diseases among silos when data are horizontally separated by individual, vertically separated by data type, and separated by identity without patient ID matching. The confederated learning method can be intuitively understood as a distributed learning method with representation learning, generative model, imputation method and data augmentation elements.Our confederated learning method achieves AUCROC (Area Under The Curve Receiver Operating Characteristics) of 0.787 for diabetes prediction, 0.718 for psychological disorders prediction, and 0.698 for Ischemic heart disease prediction using nationwide health insurance claims.Our proposed confederated learning method successfully trained machine learning models on health insurance data separated by two or more dimensions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星辰大海应助虾米吃螃蟹采纳,获得10
刚刚
NexusExplorer应助朴实的无极采纳,获得10
1秒前
谷雨应助努力的咩咩采纳,获得10
1秒前
1秒前
Andy发布了新的文献求助10
3秒前
3秒前
bkagyin应助毛线球球采纳,获得10
3秒前
天天快乐应助春风明月采纳,获得10
4秒前
yyy发布了新的文献求助10
5秒前
林安笙完成签到,获得积分10
5秒前
cau_zq发布了新的文献求助10
6秒前
李爱国应助义气语海采纳,获得10
6秒前
6秒前
科研通AI2S应助花成花采纳,获得10
7秒前
BareBear应助花成花采纳,获得10
7秒前
8秒前
10秒前
qing完成签到 ,获得积分10
11秒前
皮皮团完成签到 ,获得积分10
11秒前
11秒前
13秒前
调皮又蓝发布了新的文献求助30
14秒前
14秒前
15秒前
fabea完成签到,获得积分0
15秒前
16秒前
安静的十八完成签到,获得积分10
17秒前
共享精神应助小李采纳,获得10
17秒前
Rason发布了新的文献求助10
18秒前
柯镇恶完成签到,获得积分10
19秒前
飞快的甜瓜完成签到,获得积分20
19秒前
打打应助杨桃采纳,获得10
19秒前
纯真乐儿完成签到 ,获得积分10
20秒前
大禹发布了新的文献求助20
20秒前
隐形曼青应助追光者采纳,获得10
22秒前
维尼熊完成签到 ,获得积分10
25秒前
26秒前
sofia发布了新的文献求助80
28秒前
31秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588492
求助须知:如何正确求助?哪些是违规求助? 4671582
关于积分的说明 14787884
捐赠科研通 4625454
什么是DOI,文献DOI怎么找? 2531836
邀请新用户注册赠送积分活动 1500428
关于科研通互助平台的介绍 1468314