Confederated learning in healthcare: training machine learning models using disconnected data separated by individual, data type and identity for Large-Scale Health System Intelligence

机器学习 人工智能 计算机科学 医疗保健 在线机器学习 学习曲线 匹配(统计) 无监督学习
作者
Dianbo Liu,Kathe Fox,Griffin Weber,Tim Miller
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:: 104151-104151
标识
DOI:10.1016/j.jbi.2022.104151
摘要

A patient's health information is generally fragmented across silos because it follows how care is delivered: multiple providers in multiple settings. Though it is technically feasible to reunite data for analysis in a manner that underpins a rapid learning healthcare system, privacy concerns and regulatory barriers limit data centralization for this purpose.Machine learning can be conducted in a federated manner on patient datasets with the same set of variables but separated across storage. But federated learning cannot handle the situation where different data types for a given patient are separated vertically across different organizations and when patient ID matching across different institutions is difficult. We call methods that enable machine learning model training on data separated by two or more dimensions "confederated machine learning", which we aim to develop in this study.We propose and evaluate confederated learning for training machine learning models to stratify the risk of several diseases among silos when data are horizontally separated by individual, vertically separated by data type, and separated by identity without patient ID matching. The confederated learning method can be intuitively understood as a distributed learning method with representation learning, generative model, imputation method and data augmentation elements.Our confederated learning method achieves AUCROC (Area Under The Curve Receiver Operating Characteristics) of 0.787 for diabetes prediction, 0.718 for psychological disorders prediction, and 0.698 for Ischemic heart disease prediction using nationwide health insurance claims.Our proposed confederated learning method successfully trained machine learning models on health insurance data separated by two or more dimensions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hello应助Lmy采纳,获得10
1秒前
2秒前
爆米花应助Dean采纳,获得30
3秒前
善学以致用应助wr采纳,获得10
3秒前
清秀晓筠发布了新的文献求助30
3秒前
kai chen应助Mr采纳,获得10
5秒前
5秒前
淳于汲发布了新的文献求助10
5秒前
6秒前
水上汀州完成签到 ,获得积分10
6秒前
情怀应助ningning采纳,获得10
6秒前
6秒前
仲夏完成签到,获得积分10
7秒前
8秒前
8秒前
活泼的菱zi完成签到,获得积分10
8秒前
9秒前
jeonghan完成签到,获得积分10
9秒前
嘞是举仔发布了新的文献求助10
10秒前
10秒前
10秒前
Zer0完成签到,获得积分10
10秒前
gqy发布了新的文献求助10
10秒前
10秒前
Owen应助雨诺采纳,获得10
11秒前
小蘑菇应助xyuyulul采纳,获得10
11秒前
xxx完成签到,获得积分10
12秒前
Hello应助Destiny采纳,获得10
12秒前
汉堡包应助小凯采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
jeonghan发布了新的文献求助10
14秒前
霹雳蜗牛发布了新的文献求助10
14秒前
北木南发布了新的文献求助10
15秒前
15秒前
刘子田发布了新的文献求助10
16秒前
左右发布了新的文献求助10
18秒前
19秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633094
求助须知:如何正确求助?哪些是违规求助? 4728561
关于积分的说明 14985128
捐赠科研通 4791070
什么是DOI,文献DOI怎么找? 2558755
邀请新用户注册赠送积分活动 1519164
关于科研通互助平台的介绍 1479502