亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Confederated learning in healthcare: training machine learning models using disconnected data separated by individual, data type and identity for Large-Scale Health System Intelligence

机器学习 人工智能 计算机科学 医疗保健 在线机器学习 学习曲线 匹配(统计) 无监督学习
作者
Dianbo Liu,Kathe Fox,Griffin Weber,Tim Miller
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:: 104151-104151
标识
DOI:10.1016/j.jbi.2022.104151
摘要

A patient's health information is generally fragmented across silos because it follows how care is delivered: multiple providers in multiple settings. Though it is technically feasible to reunite data for analysis in a manner that underpins a rapid learning healthcare system, privacy concerns and regulatory barriers limit data centralization for this purpose.Machine learning can be conducted in a federated manner on patient datasets with the same set of variables but separated across storage. But federated learning cannot handle the situation where different data types for a given patient are separated vertically across different organizations and when patient ID matching across different institutions is difficult. We call methods that enable machine learning model training on data separated by two or more dimensions "confederated machine learning", which we aim to develop in this study.We propose and evaluate confederated learning for training machine learning models to stratify the risk of several diseases among silos when data are horizontally separated by individual, vertically separated by data type, and separated by identity without patient ID matching. The confederated learning method can be intuitively understood as a distributed learning method with representation learning, generative model, imputation method and data augmentation elements.Our confederated learning method achieves AUCROC (Area Under The Curve Receiver Operating Characteristics) of 0.787 for diabetes prediction, 0.718 for psychological disorders prediction, and 0.698 for Ischemic heart disease prediction using nationwide health insurance claims.Our proposed confederated learning method successfully trained machine learning models on health insurance data separated by two or more dimensions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
Lebpom发布了新的文献求助10
6秒前
6秒前
无000发布了新的文献求助10
9秒前
Jessica完成签到,获得积分10
10秒前
14秒前
15秒前
16秒前
在水一方应助无000采纳,获得10
19秒前
Karol发布了新的文献求助10
21秒前
27秒前
黑神白了完成签到,获得积分10
28秒前
31秒前
31秒前
31秒前
科目三应助科研通管家采纳,获得10
32秒前
小蘑菇应助科研通管家采纳,获得10
32秒前
大模型应助科研通管家采纳,获得10
32秒前
kitty完成签到 ,获得积分10
35秒前
赘婿应助黑神白了采纳,获得10
35秒前
情怀应助Lebpom采纳,获得10
35秒前
Karol发布了新的文献求助10
40秒前
科研启动完成签到,获得积分10
42秒前
随机昵称完成签到,获得积分10
47秒前
47秒前
拼搏映菡完成签到 ,获得积分10
48秒前
为你钟情完成签到 ,获得积分10
58秒前
1分钟前
Henvy完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Lebpom发布了新的文献求助10
1分钟前
1分钟前
1分钟前
yzm发布了新的文献求助10
1分钟前
iDong完成签到 ,获得积分10
1分钟前
大胆的碧菡完成签到,获得积分10
1分钟前
Ava应助Lebpom采纳,获得10
1分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746562
求助须知:如何正确求助?哪些是违规求助? 5436195
关于积分的说明 15355651
捐赠科研通 4886597
什么是DOI,文献DOI怎么找? 2627322
邀请新用户注册赠送积分活动 1575805
关于科研通互助平台的介绍 1532538