Confederated learning in healthcare: training machine learning models using disconnected data separated by individual, data type and identity for Large-Scale Health System Intelligence

机器学习 人工智能 计算机科学 医疗保健 在线机器学习 学习曲线 匹配(统计) 无监督学习
作者
Dianbo Liu,Kathe Fox,Griffin Weber,Tim Miller
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:: 104151-104151
标识
DOI:10.1016/j.jbi.2022.104151
摘要

A patient's health information is generally fragmented across silos because it follows how care is delivered: multiple providers in multiple settings. Though it is technically feasible to reunite data for analysis in a manner that underpins a rapid learning healthcare system, privacy concerns and regulatory barriers limit data centralization for this purpose.Machine learning can be conducted in a federated manner on patient datasets with the same set of variables but separated across storage. But federated learning cannot handle the situation where different data types for a given patient are separated vertically across different organizations and when patient ID matching across different institutions is difficult. We call methods that enable machine learning model training on data separated by two or more dimensions "confederated machine learning", which we aim to develop in this study.We propose and evaluate confederated learning for training machine learning models to stratify the risk of several diseases among silos when data are horizontally separated by individual, vertically separated by data type, and separated by identity without patient ID matching. The confederated learning method can be intuitively understood as a distributed learning method with representation learning, generative model, imputation method and data augmentation elements.Our confederated learning method achieves AUCROC (Area Under The Curve Receiver Operating Characteristics) of 0.787 for diabetes prediction, 0.718 for psychological disorders prediction, and 0.698 for Ischemic heart disease prediction using nationwide health insurance claims.Our proposed confederated learning method successfully trained machine learning models on health insurance data separated by two or more dimensions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
852应助靓仔采纳,获得10
1秒前
子车茗应助wilsss采纳,获得20
3秒前
时迁完成签到 ,获得积分10
3秒前
CMUSK完成签到 ,获得积分10
6秒前
唐泽轩完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
一灯大师完成签到,获得积分10
7秒前
8秒前
天玄一刀完成签到,获得积分10
9秒前
震动的友琴完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
11秒前
zisui发布了新的文献求助10
13秒前
白白不喽发布了新的文献求助10
13秒前
14秒前
怕黑三毒发布了新的文献求助10
15秒前
靓仔发布了新的文献求助10
15秒前
15秒前
wilsss完成签到,获得积分20
15秒前
完美世界应助一只呆果蝇采纳,获得10
16秒前
17秒前
17秒前
lokiyyy发布了新的文献求助10
17秒前
里已经完成签到,获得积分10
19秒前
唐泽轩关注了科研通微信公众号
20秒前
20秒前
21秒前
wuwa完成签到,获得积分10
21秒前
小鱼发布了新的文献求助10
21秒前
荞麦婷子发布了新的文献求助10
25秒前
26秒前
淼淼完成签到,获得积分10
26秒前
27秒前
27秒前
27秒前
A晨发布了新的文献求助10
27秒前
27秒前
完美世界应助哦萨尔采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679710
求助须知:如何正确求助?哪些是违规求助? 4993216
关于积分的说明 15170566
捐赠科研通 4839549
什么是DOI,文献DOI怎么找? 2593456
邀请新用户注册赠送积分活动 1546531
关于科研通互助平台的介绍 1504659