亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Confederated learning in healthcare: training machine learning models using disconnected data separated by individual, data type and identity for Large-Scale Health System Intelligence

机器学习 人工智能 计算机科学 医疗保健 在线机器学习 学习曲线 匹配(统计) 无监督学习
作者
Dianbo Liu,Kathe Fox,Griffin Weber,Tim Miller
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:: 104151-104151
标识
DOI:10.1016/j.jbi.2022.104151
摘要

A patient's health information is generally fragmented across silos because it follows how care is delivered: multiple providers in multiple settings. Though it is technically feasible to reunite data for analysis in a manner that underpins a rapid learning healthcare system, privacy concerns and regulatory barriers limit data centralization for this purpose.Machine learning can be conducted in a federated manner on patient datasets with the same set of variables but separated across storage. But federated learning cannot handle the situation where different data types for a given patient are separated vertically across different organizations and when patient ID matching across different institutions is difficult. We call methods that enable machine learning model training on data separated by two or more dimensions "confederated machine learning", which we aim to develop in this study.We propose and evaluate confederated learning for training machine learning models to stratify the risk of several diseases among silos when data are horizontally separated by individual, vertically separated by data type, and separated by identity without patient ID matching. The confederated learning method can be intuitively understood as a distributed learning method with representation learning, generative model, imputation method and data augmentation elements.Our confederated learning method achieves AUCROC (Area Under The Curve Receiver Operating Characteristics) of 0.787 for diabetes prediction, 0.718 for psychological disorders prediction, and 0.698 for Ischemic heart disease prediction using nationwide health insurance claims.Our proposed confederated learning method successfully trained machine learning models on health insurance data separated by two or more dimensions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
8秒前
执着艳发布了新的文献求助150
8秒前
14秒前
17秒前
玩命的糖豆完成签到 ,获得积分10
17秒前
21秒前
陈尹蓝完成签到 ,获得积分10
29秒前
29秒前
火山有点意思完成签到,获得积分10
30秒前
千里草完成签到,获得积分10
33秒前
寻道图强应助科研通管家采纳,获得30
35秒前
Trivers应助科研通管家采纳,获得10
35秒前
acd发布了新的文献求助10
35秒前
35秒前
53秒前
hyy完成签到 ,获得积分10
56秒前
李健的小迷弟应助Suchus采纳,获得10
1分钟前
1分钟前
优美香露发布了新的文献求助10
1分钟前
1分钟前
优美香露发布了新的文献求助80
1分钟前
万能图书馆应助acd采纳,获得10
1分钟前
优美香露发布了新的文献求助10
1分钟前
酷波er应助懦弱的丹秋采纳,获得10
1分钟前
安安爱阎魔完成签到,获得积分10
1分钟前
小马甲应助优美香露采纳,获得30
2分钟前
852应助优美香露采纳,获得10
2分钟前
2分钟前
Suchus发布了新的文献求助10
2分钟前
我不爱吃红苹果完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
雨jia发布了新的文献求助10
2分钟前
2分钟前
3分钟前
pebble发布了新的文献求助10
3分钟前
3分钟前
Suraim完成签到,获得积分10
3分钟前
pebble完成签到,获得积分20
3分钟前
顾矜应助吃吃菜菜吧采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657966
求助须知:如何正确求助?哪些是违规求助? 4815528
关于积分的说明 15080720
捐赠科研通 4816288
什么是DOI,文献DOI怎么找? 2577230
邀请新用户注册赠送积分活动 1532260
关于科研通互助平台的介绍 1490823