亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Confederated learning in healthcare: training machine learning models using disconnected data separated by individual, data type and identity for Large-Scale Health System Intelligence

机器学习 人工智能 计算机科学 医疗保健 在线机器学习 学习曲线 匹配(统计) 无监督学习
作者
Dianbo Liu,Kathe Fox,Griffin Weber,Tim Miller
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:: 104151-104151
标识
DOI:10.1016/j.jbi.2022.104151
摘要

A patient's health information is generally fragmented across silos because it follows how care is delivered: multiple providers in multiple settings. Though it is technically feasible to reunite data for analysis in a manner that underpins a rapid learning healthcare system, privacy concerns and regulatory barriers limit data centralization for this purpose.Machine learning can be conducted in a federated manner on patient datasets with the same set of variables but separated across storage. But federated learning cannot handle the situation where different data types for a given patient are separated vertically across different organizations and when patient ID matching across different institutions is difficult. We call methods that enable machine learning model training on data separated by two or more dimensions "confederated machine learning", which we aim to develop in this study.We propose and evaluate confederated learning for training machine learning models to stratify the risk of several diseases among silos when data are horizontally separated by individual, vertically separated by data type, and separated by identity without patient ID matching. The confederated learning method can be intuitively understood as a distributed learning method with representation learning, generative model, imputation method and data augmentation elements.Our confederated learning method achieves AUCROC (Area Under The Curve Receiver Operating Characteristics) of 0.787 for diabetes prediction, 0.718 for psychological disorders prediction, and 0.698 for Ischemic heart disease prediction using nationwide health insurance claims.Our proposed confederated learning method successfully trained machine learning models on health insurance data separated by two or more dimensions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
胡林发布了新的文献求助10
11秒前
null应助科研通管家采纳,获得10
26秒前
null应助科研通管家采纳,获得10
26秒前
null应助科研通管家采纳,获得10
26秒前
Qing发布了新的文献求助10
27秒前
传奇3应助drcc采纳,获得10
28秒前
花生酱关注了科研通微信公众号
30秒前
39秒前
40秒前
初晴完成签到 ,获得积分10
41秒前
Criminology34应助ZNN1234采纳,获得10
41秒前
搜集达人应助Qing采纳,获得10
41秒前
12发布了新的文献求助10
43秒前
44秒前
48秒前
inRe发布了新的文献求助10
57秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
12完成签到,获得积分10
1分钟前
1分钟前
drcc给drcc的求助进行了留言
1分钟前
1分钟前
DaMin32767发布了新的文献求助10
1分钟前
江梁完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
wanci应助我的娃采纳,获得10
1分钟前
1分钟前
栖衡发布了新的文献求助10
1分钟前
2分钟前
栖衡完成签到,获得积分10
2分钟前
2分钟前
虚幻发布了新的文献求助10
2分钟前
2分钟前
现代火车发布了新的文献求助10
2分钟前
宝贝丫头完成签到 ,获得积分10
2分钟前
2分钟前
只只完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628101
求助须知:如何正确求助?哪些是违规求助? 4715567
关于积分的说明 14963616
捐赠科研通 4785765
什么是DOI,文献DOI怎么找? 2555328
邀请新用户注册赠送积分活动 1516636
关于科研通互助平台的介绍 1477166