清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Confederated learning in healthcare: training machine learning models using disconnected data separated by individual, data type and identity for Large-Scale Health System Intelligence

机器学习 人工智能 计算机科学 医疗保健 在线机器学习 学习曲线 匹配(统计) 无监督学习
作者
Dianbo Liu,Kathe Fox,Griffin Weber,Tim Miller
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:: 104151-104151
标识
DOI:10.1016/j.jbi.2022.104151
摘要

A patient's health information is generally fragmented across silos because it follows how care is delivered: multiple providers in multiple settings. Though it is technically feasible to reunite data for analysis in a manner that underpins a rapid learning healthcare system, privacy concerns and regulatory barriers limit data centralization for this purpose.Machine learning can be conducted in a federated manner on patient datasets with the same set of variables but separated across storage. But federated learning cannot handle the situation where different data types for a given patient are separated vertically across different organizations and when patient ID matching across different institutions is difficult. We call methods that enable machine learning model training on data separated by two or more dimensions "confederated machine learning", which we aim to develop in this study.We propose and evaluate confederated learning for training machine learning models to stratify the risk of several diseases among silos when data are horizontally separated by individual, vertically separated by data type, and separated by identity without patient ID matching. The confederated learning method can be intuitively understood as a distributed learning method with representation learning, generative model, imputation method and data augmentation elements.Our confederated learning method achieves AUCROC (Area Under The Curve Receiver Operating Characteristics) of 0.787 for diabetes prediction, 0.718 for psychological disorders prediction, and 0.698 for Ischemic heart disease prediction using nationwide health insurance claims.Our proposed confederated learning method successfully trained machine learning models on health insurance data separated by two or more dimensions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
春宇浩然发布了新的文献求助10
16秒前
16秒前
19秒前
luo完成签到,获得积分10
21秒前
MchemG给勤奋的曼香的求助进行了留言
29秒前
33秒前
Ava应助春宇浩然采纳,获得10
45秒前
57秒前
1分钟前
情怀应助无情的琳采纳,获得10
1分钟前
相当鱼完成签到 ,获得积分10
1分钟前
归尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
无情的琳发布了新的文献求助10
1分钟前
gszy1975完成签到,获得积分10
1分钟前
1分钟前
2分钟前
zzgpku完成签到,获得积分0
2分钟前
2分钟前
2分钟前
2分钟前
李健应助天天采纳,获得10
2分钟前
3分钟前
两个榴莲完成签到,获得积分0
3分钟前
3分钟前
逸云发布了新的文献求助30
3分钟前
量子星尘发布了新的文献求助10
3分钟前
球祝完成签到,获得积分10
3分钟前
3分钟前
归尘发布了新的文献求助10
4分钟前
欠缺完成签到,获得积分20
4分钟前
研友_VZG7GZ应助凉宫八月采纳,获得10
4分钟前
逸云完成签到,获得积分10
4分钟前
4分钟前
凉宫八月发布了新的文献求助10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724137
求助须知:如何正确求助?哪些是违规求助? 5285050
关于积分的说明 15299615
捐赠科研通 4872220
什么是DOI,文献DOI怎么找? 2616750
邀请新用户注册赠送积分活动 1566605
关于科研通互助平台的介绍 1523490