Confederated learning in healthcare: training machine learning models using disconnected data separated by individual, data type and identity for Large-Scale Health System Intelligence

机器学习 人工智能 计算机科学 医疗保健 在线机器学习 学习曲线 匹配(统计) 无监督学习
作者
Dianbo Liu,Kathe Fox,Griffin Weber,Tim Miller
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:: 104151-104151
标识
DOI:10.1016/j.jbi.2022.104151
摘要

A patient's health information is generally fragmented across silos because it follows how care is delivered: multiple providers in multiple settings. Though it is technically feasible to reunite data for analysis in a manner that underpins a rapid learning healthcare system, privacy concerns and regulatory barriers limit data centralization for this purpose.Machine learning can be conducted in a federated manner on patient datasets with the same set of variables but separated across storage. But federated learning cannot handle the situation where different data types for a given patient are separated vertically across different organizations and when patient ID matching across different institutions is difficult. We call methods that enable machine learning model training on data separated by two or more dimensions "confederated machine learning", which we aim to develop in this study.We propose and evaluate confederated learning for training machine learning models to stratify the risk of several diseases among silos when data are horizontally separated by individual, vertically separated by data type, and separated by identity without patient ID matching. The confederated learning method can be intuitively understood as a distributed learning method with representation learning, generative model, imputation method and data augmentation elements.Our confederated learning method achieves AUCROC (Area Under The Curve Receiver Operating Characteristics) of 0.787 for diabetes prediction, 0.718 for psychological disorders prediction, and 0.698 for Ischemic heart disease prediction using nationwide health insurance claims.Our proposed confederated learning method successfully trained machine learning models on health insurance data separated by two or more dimensions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
刘丰恺发布了新的文献求助10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
koong发布了新的文献求助10
1秒前
1秒前
英俊的铭应助长情的芝麻采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
ZYH完成签到,获得积分10
1秒前
1秒前
酷波er应助马老师采纳,获得10
3秒前
星辰大海应助1820采纳,获得20
4秒前
周周发布了新的文献求助10
5秒前
ZYH发布了新的文献求助10
5秒前
Phil发布了新的文献求助10
5秒前
5秒前
方园发布了新的文献求助50
6秒前
开心幻巧发布了新的文献求助10
7秒前
10秒前
ssy关注了科研通微信公众号
10秒前
ncycg发布了新的文献求助10
10秒前
11秒前
周周完成签到,获得积分10
12秒前
柒辞完成签到,获得积分10
13秒前
哈哈哈发布了新的文献求助30
14秒前
方园完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
18秒前
小杜完成签到 ,获得积分10
19秒前
如晴发布了新的文献求助20
20秒前
严庆完成签到,获得积分10
20秒前
英姑应助wzy采纳,获得10
20秒前
21秒前
开心幻巧完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675220
求助须知:如何正确求助?哪些是违规求助? 4944256
关于积分的说明 15152011
捐赠科研通 4834395
什么是DOI,文献DOI怎么找? 2589462
邀请新用户注册赠送积分活动 1543115
关于科研通互助平台的介绍 1501056