Confederated learning in healthcare: training machine learning models using disconnected data separated by individual, data type and identity for Large-Scale Health System Intelligence

机器学习 人工智能 计算机科学 医疗保健 在线机器学习 学习曲线 匹配(统计) 无监督学习
作者
Dianbo Liu,Kathe Fox,Griffin Weber,Tim Miller
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:: 104151-104151
标识
DOI:10.1016/j.jbi.2022.104151
摘要

A patient's health information is generally fragmented across silos because it follows how care is delivered: multiple providers in multiple settings. Though it is technically feasible to reunite data for analysis in a manner that underpins a rapid learning healthcare system, privacy concerns and regulatory barriers limit data centralization for this purpose.Machine learning can be conducted in a federated manner on patient datasets with the same set of variables but separated across storage. But federated learning cannot handle the situation where different data types for a given patient are separated vertically across different organizations and when patient ID matching across different institutions is difficult. We call methods that enable machine learning model training on data separated by two or more dimensions "confederated machine learning", which we aim to develop in this study.We propose and evaluate confederated learning for training machine learning models to stratify the risk of several diseases among silos when data are horizontally separated by individual, vertically separated by data type, and separated by identity without patient ID matching. The confederated learning method can be intuitively understood as a distributed learning method with representation learning, generative model, imputation method and data augmentation elements.Our confederated learning method achieves AUCROC (Area Under The Curve Receiver Operating Characteristics) of 0.787 for diabetes prediction, 0.718 for psychological disorders prediction, and 0.698 for Ischemic heart disease prediction using nationwide health insurance claims.Our proposed confederated learning method successfully trained machine learning models on health insurance data separated by two or more dimensions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ybcy完成签到,获得积分10
1秒前
犹豫的雨柏完成签到,获得积分10
1秒前
英俊冰岚完成签到 ,获得积分10
3秒前
spicyfish完成签到,获得积分10
3秒前
木雨亦潇潇完成签到,获得积分10
3秒前
HopeLee完成签到,获得积分10
3秒前
livra1058完成签到,获得积分10
4秒前
DrPika完成签到,获得积分10
4秒前
科目三应助shouyu29采纳,获得10
5秒前
TiY完成签到 ,获得积分10
5秒前
5秒前
maxthon完成签到,获得积分10
6秒前
6秒前
阳光的易真完成签到,获得积分10
7秒前
不重名完成签到 ,获得积分10
9秒前
爱学习的马邓邓完成签到 ,获得积分10
11秒前
iuhgnor完成签到,获得积分0
11秒前
饮千欲完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
田様应助无奈的书琴采纳,获得10
17秒前
391X小king发布了新的文献求助10
21秒前
牛仔完成签到 ,获得积分10
21秒前
饱满芷卉完成签到,获得积分10
22秒前
李爱国应助Wang采纳,获得10
26秒前
忧郁凌波完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
28秒前
大个应助maple采纳,获得10
28秒前
凌儿响叮当完成签到 ,获得积分10
31秒前
仲大船完成签到,获得积分10
32秒前
32秒前
宁123完成签到 ,获得积分10
32秒前
喵喵徐完成签到 ,获得积分10
33秒前
112222完成签到 ,获得积分10
33秒前
南瓜豆腐完成签到 ,获得积分10
36秒前
无心的星月完成签到 ,获得积分10
38秒前
山复尔尔完成签到 ,获得积分10
42秒前
sora完成签到,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651424
求助须知:如何正确求助?哪些是违规求助? 4784822
关于积分的说明 15053799
捐赠科研通 4810090
什么是DOI,文献DOI怎么找? 2572957
邀请新用户注册赠送积分活动 1528830
关于科研通互助平台的介绍 1487848