Confederated learning in healthcare: training machine learning models using disconnected data separated by individual, data type and identity for Large-Scale Health System Intelligence

机器学习 人工智能 计算机科学 医疗保健 在线机器学习 学习曲线 匹配(统计) 无监督学习
作者
Dianbo Liu,Kathe Fox,Griffin Weber,Tim Miller
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:: 104151-104151
标识
DOI:10.1016/j.jbi.2022.104151
摘要

A patient's health information is generally fragmented across silos because it follows how care is delivered: multiple providers in multiple settings. Though it is technically feasible to reunite data for analysis in a manner that underpins a rapid learning healthcare system, privacy concerns and regulatory barriers limit data centralization for this purpose.Machine learning can be conducted in a federated manner on patient datasets with the same set of variables but separated across storage. But federated learning cannot handle the situation where different data types for a given patient are separated vertically across different organizations and when patient ID matching across different institutions is difficult. We call methods that enable machine learning model training on data separated by two or more dimensions "confederated machine learning", which we aim to develop in this study.We propose and evaluate confederated learning for training machine learning models to stratify the risk of several diseases among silos when data are horizontally separated by individual, vertically separated by data type, and separated by identity without patient ID matching. The confederated learning method can be intuitively understood as a distributed learning method with representation learning, generative model, imputation method and data augmentation elements.Our confederated learning method achieves AUCROC (Area Under The Curve Receiver Operating Characteristics) of 0.787 for diabetes prediction, 0.718 for psychological disorders prediction, and 0.698 for Ischemic heart disease prediction using nationwide health insurance claims.Our proposed confederated learning method successfully trained machine learning models on health insurance data separated by two or more dimensions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕孤单的幼荷完成签到 ,获得积分10
刚刚
张张发布了新的文献求助10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
打打应助言西早采纳,获得10
1秒前
无限师完成签到,获得积分10
1秒前
乖猫要努力应助清明采纳,获得10
2秒前
渡鸦sliver完成签到,获得积分10
2秒前
llll完成签到,获得积分10
4秒前
瑞_完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
elgar612发布了新的文献求助30
5秒前
6秒前
笠柚完成签到,获得积分10
6秒前
润物无声完成签到,获得积分10
6秒前
7秒前
JamesPei应助叮咚采纳,获得10
7秒前
hdbys发布了新的文献求助10
8秒前
8秒前
月亮门儿发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
刚得力完成签到,获得积分10
9秒前
传奇3应助milan001采纳,获得10
10秒前
饭粒完成签到,获得积分10
10秒前
10秒前
正直千兰完成签到,获得积分10
11秒前
付创发布了新的文献求助10
11秒前
11秒前
pluto应助n5421采纳,获得10
12秒前
daodao发布了新的文献求助10
12秒前
zho发布了新的文献求助10
12秒前
小耗子发布了新的文献求助10
13秒前
zhaiyi发布了新的文献求助10
13秒前
qqwrv发布了新的文献求助10
14秒前
aaiirrii发布了新的文献求助30
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960905
求助须知:如何正确求助?哪些是违规求助? 3507164
关于积分的说明 11134060
捐赠科研通 3239538
什么是DOI,文献DOI怎么找? 1790202
邀请新用户注册赠送积分活动 872199
科研通“疑难数据库(出版商)”最低求助积分说明 803149