Confederated learning in healthcare: training machine learning models using disconnected data separated by individual, data type and identity for Large-Scale Health System Intelligence

机器学习 人工智能 计算机科学 医疗保健 在线机器学习 学习曲线 匹配(统计) 无监督学习
作者
Dianbo Liu,Kathe Fox,Griffin Weber,Tim Miller
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:: 104151-104151
标识
DOI:10.1016/j.jbi.2022.104151
摘要

A patient's health information is generally fragmented across silos because it follows how care is delivered: multiple providers in multiple settings. Though it is technically feasible to reunite data for analysis in a manner that underpins a rapid learning healthcare system, privacy concerns and regulatory barriers limit data centralization for this purpose.Machine learning can be conducted in a federated manner on patient datasets with the same set of variables but separated across storage. But federated learning cannot handle the situation where different data types for a given patient are separated vertically across different organizations and when patient ID matching across different institutions is difficult. We call methods that enable machine learning model training on data separated by two or more dimensions "confederated machine learning", which we aim to develop in this study.We propose and evaluate confederated learning for training machine learning models to stratify the risk of several diseases among silos when data are horizontally separated by individual, vertically separated by data type, and separated by identity without patient ID matching. The confederated learning method can be intuitively understood as a distributed learning method with representation learning, generative model, imputation method and data augmentation elements.Our confederated learning method achieves AUCROC (Area Under The Curve Receiver Operating Characteristics) of 0.787 for diabetes prediction, 0.718 for psychological disorders prediction, and 0.698 for Ischemic heart disease prediction using nationwide health insurance claims.Our proposed confederated learning method successfully trained machine learning models on health insurance data separated by two or more dimensions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗苗发布了新的文献求助10
1秒前
无花果应助薯片采纳,获得10
1秒前
卡痰的长颈鹿完成签到,获得积分10
2秒前
念l完成签到 ,获得积分10
2秒前
adi完成签到,获得积分10
2秒前
imyunxu完成签到,获得积分10
3秒前
petiteblanche发布了新的文献求助10
3秒前
杨先生发布了新的文献求助30
4秒前
jing发布了新的文献求助10
4秒前
4秒前
jewel9完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
微血管发布了新的文献求助10
5秒前
李健的粉丝团团长应助tt采纳,获得10
6秒前
薯片完成签到,获得积分10
6秒前
神途完成签到,获得积分10
7秒前
8秒前
8秒前
落寞的水蜜桃完成签到,获得积分10
8秒前
苗苗完成签到,获得积分10
8秒前
petiteblanche完成签到,获得积分10
9秒前
9秒前
9秒前
从此发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
大王叫我来巡山啊完成签到,获得积分10
13秒前
14秒前
丘比特应助谢书南采纳,获得10
14秒前
NexusExplorer应助怕黑的飞柏采纳,获得10
14秒前
彭于晏应助怕黑的飞柏采纳,获得10
14秒前
薯片发布了新的文献求助10
14秒前
深情安青应助怕黑的飞柏采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728534
求助须知:如何正确求助?哪些是违规求助? 5313250
关于积分的说明 15314452
捐赠科研通 4875726
什么是DOI,文献DOI怎么找? 2618947
邀请新用户注册赠送积分活动 1568530
关于科研通互助平台的介绍 1525171