亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Confederated learning in healthcare: training machine learning models using disconnected data separated by individual, data type and identity for Large-Scale Health System Intelligence

机器学习 人工智能 计算机科学 医疗保健 在线机器学习 学习曲线 匹配(统计) 无监督学习
作者
Dianbo Liu,Kathe Fox,Griffin Weber,Tim Miller
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:: 104151-104151
标识
DOI:10.1016/j.jbi.2022.104151
摘要

A patient's health information is generally fragmented across silos because it follows how care is delivered: multiple providers in multiple settings. Though it is technically feasible to reunite data for analysis in a manner that underpins a rapid learning healthcare system, privacy concerns and regulatory barriers limit data centralization for this purpose.Machine learning can be conducted in a federated manner on patient datasets with the same set of variables but separated across storage. But federated learning cannot handle the situation where different data types for a given patient are separated vertically across different organizations and when patient ID matching across different institutions is difficult. We call methods that enable machine learning model training on data separated by two or more dimensions "confederated machine learning", which we aim to develop in this study.We propose and evaluate confederated learning for training machine learning models to stratify the risk of several diseases among silos when data are horizontally separated by individual, vertically separated by data type, and separated by identity without patient ID matching. The confederated learning method can be intuitively understood as a distributed learning method with representation learning, generative model, imputation method and data augmentation elements.Our confederated learning method achieves AUCROC (Area Under The Curve Receiver Operating Characteristics) of 0.787 for diabetes prediction, 0.718 for psychological disorders prediction, and 0.698 for Ischemic heart disease prediction using nationwide health insurance claims.Our proposed confederated learning method successfully trained machine learning models on health insurance data separated by two or more dimensions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研帽发布了新的文献求助10
6秒前
思源应助nazhang采纳,获得10
6秒前
殷楷霖发布了新的文献求助10
7秒前
7秒前
9秒前
Allan完成签到 ,获得积分10
13秒前
隐形曼青应助举人烧烤采纳,获得10
13秒前
24秒前
25秒前
饱满的书萱完成签到,获得积分10
26秒前
nazhang发布了新的文献求助10
28秒前
青柠发布了新的文献求助10
30秒前
37秒前
小小斌发布了新的文献求助200
41秒前
49秒前
49秒前
科研通AI6应助殷楷霖采纳,获得10
49秒前
kangkang发布了新的文献求助10
50秒前
搜集达人应助xwc采纳,获得30
52秒前
共享精神应助xwc采纳,获得10
53秒前
科研通AI6应助xwc采纳,获得10
53秒前
完美世界应助xwc采纳,获得10
53秒前
科研通AI6应助xwc采纳,获得10
53秒前
端庄千青发布了新的文献求助10
54秒前
deansy发布了新的文献求助10
54秒前
58秒前
斯文败类应助端庄千青采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
拿铁小笼包完成签到,获得积分10
1分钟前
1分钟前
细心的雨竹完成签到,获得积分10
1分钟前
1分钟前
嘻嘻完成签到,获得积分10
1分钟前
青柠发布了新的文献求助10
1分钟前
充电宝应助fzy采纳,获得10
1分钟前
1分钟前
吱吱吱吱发布了新的文献求助10
1分钟前
清秀芝麻完成签到 ,获得积分10
1分钟前
小四发布了新的文献求助20
1分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644428
求助须知:如何正确求助?哪些是违规求助? 4764178
关于积分的说明 15025100
捐赠科研通 4802856
什么是DOI,文献DOI怎么找? 2567622
邀请新用户注册赠送积分活动 1525334
关于科研通互助平台的介绍 1484790