Confederated learning in healthcare: training machine learning models using disconnected data separated by individual, data type and identity for Large-Scale Health System Intelligence

机器学习 人工智能 计算机科学 医疗保健 在线机器学习 学习曲线 匹配(统计) 无监督学习
作者
Dianbo Liu,Kathe Fox,Griffin Weber,Tim Miller
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:: 104151-104151
标识
DOI:10.1016/j.jbi.2022.104151
摘要

A patient's health information is generally fragmented across silos because it follows how care is delivered: multiple providers in multiple settings. Though it is technically feasible to reunite data for analysis in a manner that underpins a rapid learning healthcare system, privacy concerns and regulatory barriers limit data centralization for this purpose.Machine learning can be conducted in a federated manner on patient datasets with the same set of variables but separated across storage. But federated learning cannot handle the situation where different data types for a given patient are separated vertically across different organizations and when patient ID matching across different institutions is difficult. We call methods that enable machine learning model training on data separated by two or more dimensions "confederated machine learning", which we aim to develop in this study.We propose and evaluate confederated learning for training machine learning models to stratify the risk of several diseases among silos when data are horizontally separated by individual, vertically separated by data type, and separated by identity without patient ID matching. The confederated learning method can be intuitively understood as a distributed learning method with representation learning, generative model, imputation method and data augmentation elements.Our confederated learning method achieves AUCROC (Area Under The Curve Receiver Operating Characteristics) of 0.787 for diabetes prediction, 0.718 for psychological disorders prediction, and 0.698 for Ischemic heart disease prediction using nationwide health insurance claims.Our proposed confederated learning method successfully trained machine learning models on health insurance data separated by two or more dimensions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wanci应助竹峪卿采纳,获得10
1秒前
1秒前
汉堡包应助困困包采纳,获得10
1秒前
情怀应助李喜喜采纳,获得10
1秒前
2秒前
威武的嫣然完成签到,获得积分10
2秒前
絮絮徐完成签到,获得积分10
3秒前
大旗发布了新的文献求助10
3秒前
xx给xx的求助进行了留言
3秒前
梦想启航发布了新的文献求助10
3秒前
讲什么讲发布了新的文献求助10
4秒前
4秒前
Lucas应助FEOROCHA采纳,获得10
4秒前
琪琪发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
wangtieling发布了新的文献求助10
5秒前
6秒前
砥砺前行完成签到 ,获得积分10
6秒前
那L6发布了新的文献求助10
6秒前
小蘑菇应助Hotony采纳,获得30
7秒前
写论文的完成签到 ,获得积分10
7秒前
7秒前
汉堡包应助英勇的多肉采纳,获得10
7秒前
pbj发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
小白云发布了新的文献求助30
8秒前
bigben446发布了新的文献求助30
8秒前
漂亮的不言完成签到 ,获得积分10
8秒前
8秒前
新月完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
熊熊发布了新的文献求助10
9秒前
TheMonster完成签到,获得积分10
10秒前
Mengxin发布了新的文献求助10
10秒前
10秒前
shanyuyulai完成签到 ,获得积分10
10秒前
吐丝麵包发布了新的文献求助30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711035
求助须知:如何正确求助?哪些是违规求助? 5202070
关于积分的说明 15263091
捐赠科研通 4863454
什么是DOI,文献DOI怎么找? 2610771
邀请新用户注册赠送积分活动 1561017
关于科研通互助平台的介绍 1518534