Confederated learning in healthcare: training machine learning models using disconnected data separated by individual, data type and identity for Large-Scale Health System Intelligence

机器学习 人工智能 计算机科学 医疗保健 在线机器学习 学习曲线 匹配(统计) 无监督学习
作者
Dianbo Liu,Kathe Fox,Griffin Weber,Tim Miller
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:: 104151-104151
标识
DOI:10.1016/j.jbi.2022.104151
摘要

A patient's health information is generally fragmented across silos because it follows how care is delivered: multiple providers in multiple settings. Though it is technically feasible to reunite data for analysis in a manner that underpins a rapid learning healthcare system, privacy concerns and regulatory barriers limit data centralization for this purpose.Machine learning can be conducted in a federated manner on patient datasets with the same set of variables but separated across storage. But federated learning cannot handle the situation where different data types for a given patient are separated vertically across different organizations and when patient ID matching across different institutions is difficult. We call methods that enable machine learning model training on data separated by two or more dimensions "confederated machine learning", which we aim to develop in this study.We propose and evaluate confederated learning for training machine learning models to stratify the risk of several diseases among silos when data are horizontally separated by individual, vertically separated by data type, and separated by identity without patient ID matching. The confederated learning method can be intuitively understood as a distributed learning method with representation learning, generative model, imputation method and data augmentation elements.Our confederated learning method achieves AUCROC (Area Under The Curve Receiver Operating Characteristics) of 0.787 for diabetes prediction, 0.718 for psychological disorders prediction, and 0.698 for Ischemic heart disease prediction using nationwide health insurance claims.Our proposed confederated learning method successfully trained machine learning models on health insurance data separated by two or more dimensions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
研友_VZG7GZ应助M27采纳,获得10
1秒前
luchong完成签到,获得积分10
1秒前
hylqj123发布了新的文献求助20
1秒前
cc完成签到 ,获得积分10
2秒前
zjl关闭了zjl文献求助
2秒前
2秒前
123发布了新的文献求助10
2秒前
francesliu完成签到,获得积分10
3秒前
yyhgyg完成签到,获得积分10
3秒前
yy发布了新的文献求助10
3秒前
聪慧翠风发布了新的文献求助10
3秒前
桐桐应助小胡采纳,获得10
4秒前
ajia应助专注白昼采纳,获得10
4秒前
LJJ完成签到,获得积分10
4秒前
tutu完成签到,获得积分20
4秒前
聪111应助淡淡的南风采纳,获得100
4秒前
4秒前
Mic应助天真千易采纳,获得10
4秒前
浮游应助天真千易采纳,获得10
4秒前
Li发布了新的文献求助10
4秒前
Mic应助天真千易采纳,获得30
4秒前
yy完成签到,获得积分10
4秒前
asdf应助天真千易采纳,获得10
4秒前
pluto应助天真千易采纳,获得10
4秒前
浮游应助天真千易采纳,获得10
5秒前
pluto应助天真千易采纳,获得10
5秒前
5秒前
浮游应助天真千易采纳,获得10
5秒前
Harry应助天真千易采纳,获得10
5秒前
浮游应助天真千易采纳,获得10
5秒前
好久不见发布了新的文献求助10
5秒前
5秒前
5秒前
慕青应助les3采纳,获得20
6秒前
6秒前
大个应助可耐的不平采纳,获得10
6秒前
恺恺qaq发布了新的文献求助200
6秒前
上官若男应助可耐的不平采纳,获得10
6秒前
JamesPei应助羊羊毛卷儿采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526219
求助须知:如何正确求助?哪些是违规求助? 4616313
关于积分的说明 14553183
捐赠科研通 4554594
什么是DOI,文献DOI怎么找? 2495952
邀请新用户注册赠送积分活动 1476311
关于科研通互助平台的介绍 1447978