亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning Can Accurately Predict Overnight Stay, Readmission, and 30-Day Complications Following Anterior Cruciate Ligament Reconstruction

医学 逻辑回归 接收机工作特性 前交叉韧带重建术 入射(几何) 深静脉 外科 急诊医学 前交叉韧带 内科学 血栓形成 物理 光学
作者
Cesar D. Lopez,Anastasia Gazgalis,Joel R. Peterson,Jamie Confino,William N. Levine,Charles A. Popkin,T. Sean Lynch
出处
期刊:Arthroscopy [Elsevier]
卷期号:39 (3): 777-786.e5 被引量:14
标识
DOI:10.1016/j.arthro.2022.06.032
摘要

This study aimed to develop machine learning (ML) models to predict hospital admission (overnight stay) as well as short-term complications and readmission rates following anterior cruciate ligament reconstruction (ACLR). Furthermore, we sought to compare the ML models with logistic regression models in predicting ACLR outcomes.The American College of Surgeons National Surgical Quality Improvement Program database was queried for patients who underwent elective ACLR from 2012 to 2018. Artificial neural network ML and logistic regression models were developed to predict overnight stay, 30-day postoperative complications, and ACL-related readmission, and model performance was compared using the area under the receiver operating characteristic curve. Regression analyses were used to identify variables that were significantly associated with the predicted outcomes.A total of 21,636 elective ACLR cases met inclusion criteria. Variables associated with hospital admission included White race, obesity, hypertension, and American Society of Anesthesiologists classification 3 and greater, anesthesia other than general, prolonged operative time, and inpatient setting. The incidence of hospital admission (overnight stay) was 10.2%, 30-day complications was 1.3%, and 30-day readmission for ACLR-related causes was 0.9%. Compared with logistic regression models, artificial neural network models reported superior area under the receiver operating characteristic curve values in predicting overnight stay (0.835 vs 0.589), 30-day complications (0.742 vs 0.590), reoperation (0.842 vs 0.601), ACLR-related readmission (0.872 vs 0.606), deep-vein thrombosis (0.804 vs 0.608), and surgical-site infection (0.818 vs 0.596).The ML models developed in this study demonstrate an application of ML in which data from a national surgical patient registry was used to predict hospital admission and 30-day postoperative complications after elective ACLR. ML models developed performed well, outperforming regression models in predicting hospital admission and short-term complications following elective ACLR. ML models performed best when predicting ACLR-related readmissions and reoperations, followed by overnight stay.IV, retrospective comparative prognostic trial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
朱文韬发布了新的文献求助10
7秒前
周周发布了新的文献求助10
9秒前
所所应助顺顺过过采纳,获得10
22秒前
31秒前
45秒前
琉璃叟发布了新的文献求助10
51秒前
朱文韬发布了新的文献求助10
56秒前
朱文韬完成签到,获得积分10
1分钟前
琉璃叟完成签到,获得积分10
1分钟前
朱羊羊完成签到,获得积分10
1分钟前
akram123发布了新的文献求助10
1分钟前
ding应助朱羊羊采纳,获得10
1分钟前
干净柏柳完成签到 ,获得积分10
1分钟前
林宥嘉完成签到,获得积分10
1分钟前
Yuki完成签到 ,获得积分10
1分钟前
Lucas应助akram123采纳,获得10
1分钟前
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
Ade107发布了新的文献求助10
1分钟前
SciGPT应助carols采纳,获得10
1分钟前
无奈的靖仇关注了科研通微信公众号
1分钟前
2分钟前
carols发布了新的文献求助10
2分钟前
青柚完成签到 ,获得积分10
2分钟前
liutao完成签到,获得积分10
2分钟前
3分钟前
顺顺过过完成签到,获得积分10
3分钟前
小黄还你好完成签到 ,获得积分10
3分钟前
包容远山发布了新的文献求助10
3分钟前
3分钟前
3分钟前
顺顺过过发布了新的文献求助10
3分钟前
akram123发布了新的文献求助10
3分钟前
完美世界应助liutao采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
3分钟前
曲线发布了新的文献求助10
3分钟前
缓慢逍遥完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639537
求助须知:如何正确求助?哪些是违规求助? 4748939
关于积分的说明 15006656
捐赠科研通 4797713
什么是DOI,文献DOI怎么找? 2563741
邀请新用户注册赠送积分活动 1522710
关于科研通互助平台的介绍 1482425