Machine Learning Can Accurately Predict Overnight Stay, Readmission, and 30-Day Complications Following Anterior Cruciate Ligament Reconstruction

医学 逻辑回归 接收机工作特性 前交叉韧带重建术 入射(几何) 深静脉 外科 急诊医学 前交叉韧带 内科学 血栓形成 物理 光学
作者
Cesar D. Lopez,Anastasia Gazgalis,Joel R. Peterson,Jamie Confino,William N. Levine,Charles A. Popkin,T. Sean Lynch
出处
期刊:Arthroscopy [Elsevier BV]
卷期号:39 (3): 777-786.e5 被引量:14
标识
DOI:10.1016/j.arthro.2022.06.032
摘要

This study aimed to develop machine learning (ML) models to predict hospital admission (overnight stay) as well as short-term complications and readmission rates following anterior cruciate ligament reconstruction (ACLR). Furthermore, we sought to compare the ML models with logistic regression models in predicting ACLR outcomes.The American College of Surgeons National Surgical Quality Improvement Program database was queried for patients who underwent elective ACLR from 2012 to 2018. Artificial neural network ML and logistic regression models were developed to predict overnight stay, 30-day postoperative complications, and ACL-related readmission, and model performance was compared using the area under the receiver operating characteristic curve. Regression analyses were used to identify variables that were significantly associated with the predicted outcomes.A total of 21,636 elective ACLR cases met inclusion criteria. Variables associated with hospital admission included White race, obesity, hypertension, and American Society of Anesthesiologists classification 3 and greater, anesthesia other than general, prolonged operative time, and inpatient setting. The incidence of hospital admission (overnight stay) was 10.2%, 30-day complications was 1.3%, and 30-day readmission for ACLR-related causes was 0.9%. Compared with logistic regression models, artificial neural network models reported superior area under the receiver operating characteristic curve values in predicting overnight stay (0.835 vs 0.589), 30-day complications (0.742 vs 0.590), reoperation (0.842 vs 0.601), ACLR-related readmission (0.872 vs 0.606), deep-vein thrombosis (0.804 vs 0.608), and surgical-site infection (0.818 vs 0.596).The ML models developed in this study demonstrate an application of ML in which data from a national surgical patient registry was used to predict hospital admission and 30-day postoperative complications after elective ACLR. ML models developed performed well, outperforming regression models in predicting hospital admission and short-term complications following elective ACLR. ML models performed best when predicting ACLR-related readmissions and reoperations, followed by overnight stay.IV, retrospective comparative prognostic trial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐的飞瑶完成签到,获得积分10
1秒前
小皮不皮发布了新的文献求助30
3秒前
义气玫瑰完成签到,获得积分10
3秒前
5秒前
Dean发布了新的文献求助10
5秒前
6秒前
7秒前
8秒前
浮游应助吹又生采纳,获得10
9秒前
天天快乐应助哈哈哈哈哈采纳,获得10
9秒前
虚心的不二完成签到 ,获得积分10
9秒前
11秒前
不要逼我发布了新的文献求助10
11秒前
阳光飞槐发布了新的文献求助10
12秒前
12秒前
orixero应助加油女王采纳,获得10
12秒前
13秒前
13秒前
浮游应助jou采纳,获得10
13秒前
13秒前
小皮不皮完成签到,获得积分10
13秒前
一生所爱完成签到 ,获得积分10
14秒前
14秒前
桐桐应助低空飞行采纳,获得10
14秒前
15秒前
邱佩群给邱佩群的求助进行了留言
15秒前
DJ完成签到,获得积分10
15秒前
鲜艳的三毒完成签到,获得积分10
16秒前
专注水壶完成签到,获得积分10
16秒前
顾矜应助代上渝采纳,获得10
17秒前
辛勤以晴发布了新的文献求助10
18秒前
我是老大应助一个大西瓜采纳,获得10
19秒前
247793325发布了新的文献求助10
19秒前
20秒前
21秒前
樂le发布了新的文献求助10
21秒前
科研通AI6应助不要逼我采纳,获得10
22秒前
22秒前
超开心发布了新的文献求助10
24秒前
慕青应助kyJYbs采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4962021
求助须知:如何正确求助?哪些是违规求助? 4222161
关于积分的说明 13150076
捐赠科研通 4006267
什么是DOI,文献DOI怎么找? 2192890
邀请新用户注册赠送积分活动 1206674
关于科研通互助平台的介绍 1118754