A Temporal-Aware Relation and Attention Network for Temporal Action Localization

计算机科学 推论 时态数据库 关系(数据库) 人工智能 图形 任务(项目管理) 领域(数学分析) 机器学习 模式识别(心理学) 数据挖掘 理论计算机科学 数学分析 数学 管理 经济
作者
Yibo Zhao,Hua Zhang,Zan Gao,Weili Guan,Jie Nie,An-An Liu,Meng Wang,Shengyong Chen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 4746-4760 被引量:36
标识
DOI:10.1109/tip.2022.3182866
摘要

Temporal action localization is currently an active research topic in computer vision and machine learning due to its usage in smart surveillance. It is a challenging problem since the categories of the actions must be classified in untrimmed videos and the start and end of the actions need to be accurately found. Although many temporal action localization methods have been proposed, they require substantial amounts of computational resources for the training and inference processes. To solve these issues, in this work, a novel temporal-aware relation and attention network (abbreviated as TRA) is proposed for the temporal action localization task. TRA has an anchor-free and end-to-end architecture that fully uses temporal-aware information. Specifically, a temporal self-attention module is first designed to determine the relationship between different temporal positions, and more weight is given to features within the actions. Then, a multiple temporal aggregation module is constructed to aggregate the temporal domain information. Finally, a graph relation module is designed to obtain the aggregated graph features, which are used to refine the boundaries and classification results. Most importantly, these three modules are jointly explored in a unified framework, and temporal awareness is always fully used. Extensive experiments demonstrate that the proposed method can outperform all state-of-the-art methods on the THUMOS14 dataset with an average mAP that reaches 67.6% and obtain a comparable result on the ActivityNet1.3 dataset with an average mAP that reaches 34.4%. Compared with A2Net (TIP20), PCG-TAL (TIP21), and AFSD (CVPR21) TRA can achieve improvements of 11.7%, 4.4%, and 1.8%, respectively on the THUMOS14 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老阳发布了新的文献求助10
1秒前
1秒前
每天完成签到,获得积分10
3秒前
yusovegoistt完成签到,获得积分10
4秒前
CodeCraft应助liu采纳,获得10
4秒前
5秒前
彭于晏应助今天也很从心采纳,获得10
5秒前
科研通AI2S应助777采纳,获得10
5秒前
LIO完成签到 ,获得积分10
6秒前
新闻联播完成签到 ,获得积分10
7秒前
W_G完成签到,获得积分10
8秒前
王月帆发布了新的文献求助10
8秒前
善学以致用应助金光闪闪采纳,获得10
8秒前
13秒前
13秒前
16秒前
CEJ发布了新的文献求助10
16秒前
lzzk完成签到,获得积分10
18秒前
liu发布了新的文献求助10
18秒前
坚强的紊发布了新的文献求助10
18秒前
领导范儿应助wwwww采纳,获得10
18秒前
星辰大海应助老阳采纳,获得10
22秒前
蓝西装舞王完成签到,获得积分10
25秒前
28秒前
坚强的紊完成签到,获得积分10
28秒前
29秒前
asdfghjkl完成签到,获得积分10
30秒前
31秒前
机智秋烟发布了新的文献求助10
32秒前
32秒前
32秒前
隐形曼青应助HUI采纳,获得10
32秒前
我是老大应助NXK采纳,获得10
33秒前
Zyl完成签到 ,获得积分10
33秒前
xpbaby发布了新的文献求助10
34秒前
老阳发布了新的文献求助10
34秒前
35秒前
SYLH应助超级凡桃采纳,获得10
35秒前
35秒前
科研通AI5应助贪玩平安采纳,获得10
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738651
求助须知:如何正确求助?哪些是违规求助? 3282034
关于积分的说明 10027372
捐赠科研通 2998753
什么是DOI,文献DOI怎么找? 1645559
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749975