A multi-feature fusion-based domain adversarial neural network for fault diagnosis of rotating machinery

特征(语言学) 断层(地质) 人工智能 计算机科学 时域 卷积(计算机科学) 模式识别(心理学) 领域(数学分析) 频域 人工神经网络 快速傅里叶变换 特征提取 数据挖掘 深度学习 机器学习 算法 计算机视觉 数学 地质学 数学分析 哲学 地震学 语言学
作者
Dong Zhang,Lili Zhang
出处
期刊:Measurement [Elsevier]
卷期号:200: 111576-111576 被引量:6
标识
DOI:10.1016/j.measurement.2022.111576
摘要

Deep learning (DL)-based Fault Diagnosis (FD) methods have been wildly used in the industry domain for the guarantee of rotating machinery. Training these models often deserver abundant labeled data from complex or variable working conditions. However, it is knotty to obtain massive data of different types of faults for the working condition of interest in engineering practice which also greatly hinders the improvement of DL-based FD methods. In addition, exiting DL-based method could not achieve satisfactory diagnosis results when the working condition between source-domain (training data) and target-domain (testing data) is different. This paper proposes a novel FD method using multi-feature fusion scheme and an Improved Domain Adversarial Neural Network (IDANN). Firstly, the Fast Fourier Transform (FFT) is utilized for time-to-frequency domain conversion of raw signals. Then, the multi-feature fusion scheme is adopted to fuse the spectral samples with different working conditions, which uses multi-branch convolution layers as feature extractor and fuser. After that, the fused features are fed into IDANN as input, and the adversarial training strategy is used to train the IDANN model until an ideal equilibrium state is achieved. Finally, the feature extractor and label predictor are separated from the trained IDANN model for classification of health conditions. To verify the performance of IDANN, two public bearing datasets from Case Western Reserve University (CWRU) and Paderborn University are utilized, and results show that IDANN achieves superior diagnosis performance by making full use of multi-source of signal data compared with other conventional or DL-based diagnosis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪妍发布了新的文献求助10
刚刚
独特的夜阑完成签到 ,获得积分10
6秒前
梦在远方完成签到 ,获得积分10
8秒前
娇气的天亦完成签到,获得积分10
10秒前
11秒前
斯文的天奇完成签到 ,获得积分10
13秒前
hcjxj完成签到,获得积分10
15秒前
科研文献搬运工完成签到 ,获得积分0
15秒前
帅气的祥发布了新的文献求助10
16秒前
北风完成签到,获得积分10
17秒前
儒雅谷云完成签到 ,获得积分10
20秒前
金色天际线完成签到,获得积分10
22秒前
22秒前
Gang完成签到,获得积分10
23秒前
PM2555完成签到 ,获得积分10
23秒前
23秒前
David发布了新的文献求助10
23秒前
火华完成签到 ,获得积分10
26秒前
义气的书雁完成签到,获得积分10
29秒前
29秒前
莫之白完成签到,获得积分10
30秒前
Ade完成签到,获得积分10
30秒前
30秒前
帅气的祥完成签到,获得积分10
31秒前
默默纲完成签到,获得积分10
31秒前
轻松思枫完成签到 ,获得积分10
31秒前
zyc1111111完成签到,获得积分10
34秒前
35秒前
36秒前
38秒前
39秒前
42秒前
我爱科研研研研完成签到,获得积分20
43秒前
123butterfly发布了新的文献求助10
44秒前
沧海云完成签到 ,获得积分10
45秒前
8R60d8应助活力的雁荷采纳,获得10
48秒前
暴躁的信封完成签到,获得积分10
50秒前
Karvs完成签到,获得积分10
52秒前
山海不说话完成签到,获得积分10
53秒前
sss完成签到,获得积分10
57秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139684
求助须知:如何正确求助?哪些是违规求助? 2790623
关于积分的说明 7795749
捐赠科研通 2447017
什么是DOI,文献DOI怎么找? 1301553
科研通“疑难数据库(出版商)”最低求助积分说明 626264
版权声明 601176