A multi-feature fusion-based domain adversarial neural network for fault diagnosis of rotating machinery

特征(语言学) 断层(地质) 人工智能 计算机科学 时域 卷积(计算机科学) 模式识别(心理学) 领域(数学分析) 频域 人工神经网络 快速傅里叶变换 特征提取 数据挖掘 深度学习 机器学习 算法 计算机视觉 数学 数学分析 哲学 语言学 地震学 地质学
作者
Dong Zhang,Lili Zhang
出处
期刊:Measurement [Elsevier BV]
卷期号:200: 111576-111576 被引量:28
标识
DOI:10.1016/j.measurement.2022.111576
摘要

Deep learning (DL)-based Fault Diagnosis (FD) methods have been wildly used in the industry domain for the guarantee of rotating machinery. Training these models often deserver abundant labeled data from complex or variable working conditions. However, it is knotty to obtain massive data of different types of faults for the working condition of interest in engineering practice which also greatly hinders the improvement of DL-based FD methods. In addition, exiting DL-based method could not achieve satisfactory diagnosis results when the working condition between source-domain (training data) and target-domain (testing data) is different. This paper proposes a novel FD method using multi-feature fusion scheme and an Improved Domain Adversarial Neural Network (IDANN). Firstly, the Fast Fourier Transform (FFT) is utilized for time-to-frequency domain conversion of raw signals. Then, the multi-feature fusion scheme is adopted to fuse the spectral samples with different working conditions, which uses multi-branch convolution layers as feature extractor and fuser. After that, the fused features are fed into IDANN as input, and the adversarial training strategy is used to train the IDANN model until an ideal equilibrium state is achieved. Finally, the feature extractor and label predictor are separated from the trained IDANN model for classification of health conditions. To verify the performance of IDANN, two public bearing datasets from Case Western Reserve University (CWRU) and Paderborn University are utilized, and results show that IDANN achieves superior diagnosis performance by making full use of multi-source of signal data compared with other conventional or DL-based diagnosis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CCsci发布了新的文献求助10
刚刚
westen2509完成签到 ,获得积分10
1秒前
玛卡巴卡发布了新的文献求助10
1秒前
zuolan发布了新的文献求助10
2秒前
3秒前
所所应助132132zl采纳,获得10
4秒前
Xavier发布了新的文献求助80
4秒前
柒月流火发布了新的文献求助10
4秒前
5秒前
5秒前
科研通AI6应助昏睡的绿海采纳,获得10
5秒前
5秒前
YQT发布了新的文献求助10
6秒前
szp完成签到 ,获得积分20
6秒前
西西发布了新的文献求助10
9秒前
爱lx完成签到,获得积分10
10秒前
善学以致用应助hhhhhw采纳,获得10
10秒前
浮游应助shirly采纳,获得10
12秒前
orixero应助柒月流火采纳,获得10
12秒前
13秒前
Jackylee应助zuolan采纳,获得10
13秒前
沙砾完成签到,获得积分10
13秒前
健忘的蜡烛完成签到,获得积分10
14秒前
fang完成签到 ,获得积分10
15秒前
SciGPT应助Mr鹿采纳,获得10
16秒前
18秒前
18秒前
guard发布了新的文献求助10
19秒前
之组长了完成签到 ,获得积分10
20秒前
玛卡巴卡发布了新的文献求助10
23秒前
23秒前
24秒前
Kimin完成签到,获得积分10
25秒前
走着完成签到,获得积分10
25秒前
科研通AI6应助shirly采纳,获得10
25秒前
QQ发布了新的文献求助30
26秒前
27秒前
俏皮馒头完成签到 ,获得积分10
28秒前
专注无施完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
29秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5243324
求助须知:如何正确求助?哪些是违规求助? 4409688
关于积分的说明 13726113
捐赠科研通 4279143
什么是DOI,文献DOI怎么找? 2347946
邀请新用户注册赠送积分活动 1345283
关于科研通互助平台的介绍 1303352