A multi-feature fusion-based domain adversarial neural network for fault diagnosis of rotating machinery

特征(语言学) 断层(地质) 人工智能 计算机科学 时域 卷积(计算机科学) 模式识别(心理学) 领域(数学分析) 频域 人工神经网络 快速傅里叶变换 特征提取 数据挖掘 深度学习 机器学习 算法 计算机视觉 数学 数学分析 哲学 语言学 地震学 地质学
作者
Dong Zhang,Lili Zhang
出处
期刊:Measurement [Elsevier BV]
卷期号:200: 111576-111576 被引量:28
标识
DOI:10.1016/j.measurement.2022.111576
摘要

Deep learning (DL)-based Fault Diagnosis (FD) methods have been wildly used in the industry domain for the guarantee of rotating machinery. Training these models often deserver abundant labeled data from complex or variable working conditions. However, it is knotty to obtain massive data of different types of faults for the working condition of interest in engineering practice which also greatly hinders the improvement of DL-based FD methods. In addition, exiting DL-based method could not achieve satisfactory diagnosis results when the working condition between source-domain (training data) and target-domain (testing data) is different. This paper proposes a novel FD method using multi-feature fusion scheme and an Improved Domain Adversarial Neural Network (IDANN). Firstly, the Fast Fourier Transform (FFT) is utilized for time-to-frequency domain conversion of raw signals. Then, the multi-feature fusion scheme is adopted to fuse the spectral samples with different working conditions, which uses multi-branch convolution layers as feature extractor and fuser. After that, the fused features are fed into IDANN as input, and the adversarial training strategy is used to train the IDANN model until an ideal equilibrium state is achieved. Finally, the feature extractor and label predictor are separated from the trained IDANN model for classification of health conditions. To verify the performance of IDANN, two public bearing datasets from Case Western Reserve University (CWRU) and Paderborn University are utilized, and results show that IDANN achieves superior diagnosis performance by making full use of multi-source of signal data compared with other conventional or DL-based diagnosis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风扇没有电完成签到,获得积分10
2秒前
甜羊羊发布了新的文献求助10
3秒前
sxmt123456789发布了新的文献求助30
3秒前
3秒前
ceeray23发布了新的文献求助20
3秒前
田様应助临澈采纳,获得10
4秒前
ZQP发布了新的文献求助10
4秒前
大个应助愉快的语山采纳,获得10
7秒前
ZQP完成签到,获得积分10
9秒前
xyhua925完成签到,获得积分10
9秒前
9秒前
功不唐捐完成签到,获得积分10
9秒前
caoyuya123完成签到 ,获得积分10
9秒前
iehaoang完成签到 ,获得积分10
11秒前
领导范儿应助Mn采纳,获得10
11秒前
12秒前
12秒前
小陈呀完成签到 ,获得积分10
13秒前
13秒前
桐桐应助清脆的夜白采纳,获得10
15秒前
CodeCraft应助无隅采纳,获得10
17秒前
xixilulixiu完成签到 ,获得积分10
18秒前
18秒前
木子木子李完成签到,获得积分10
21秒前
丘比特应助小江不饿采纳,获得10
22秒前
changping应助jackten采纳,获得10
23秒前
ep_bhw发布了新的文献求助10
24秒前
FashionBoy应助胡兴采纳,获得10
25秒前
yyzhou应助Doc采纳,获得10
26秒前
30秒前
尊敬若云完成签到 ,获得积分10
31秒前
32秒前
Jasper应助科研通管家采纳,获得20
33秒前
Hello应助科研通管家采纳,获得10
33秒前
田様应助科研通管家采纳,获得10
33秒前
浮游应助科研通管家采纳,获得10
33秒前
完美世界应助科研通管家采纳,获得10
33秒前
Koalas应助科研通管家采纳,获得10
33秒前
33秒前
浮游应助科研通管家采纳,获得10
33秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208823
求助须知:如何正确求助?哪些是违规求助? 4386109
关于积分的说明 13660182
捐赠科研通 4245203
什么是DOI,文献DOI怎么找? 2329161
邀请新用户注册赠送积分活动 1326969
关于科研通互助平台的介绍 1279265