已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A multi-feature fusion-based domain adversarial neural network for fault diagnosis of rotating machinery

特征(语言学) 断层(地质) 人工智能 计算机科学 时域 卷积(计算机科学) 模式识别(心理学) 领域(数学分析) 频域 人工神经网络 快速傅里叶变换 特征提取 数据挖掘 深度学习 机器学习 算法 计算机视觉 数学 数学分析 哲学 语言学 地震学 地质学
作者
Dong Zhang,Lili Zhang
出处
期刊:Measurement [Elsevier BV]
卷期号:200: 111576-111576 被引量:28
标识
DOI:10.1016/j.measurement.2022.111576
摘要

Deep learning (DL)-based Fault Diagnosis (FD) methods have been wildly used in the industry domain for the guarantee of rotating machinery. Training these models often deserver abundant labeled data from complex or variable working conditions. However, it is knotty to obtain massive data of different types of faults for the working condition of interest in engineering practice which also greatly hinders the improvement of DL-based FD methods. In addition, exiting DL-based method could not achieve satisfactory diagnosis results when the working condition between source-domain (training data) and target-domain (testing data) is different. This paper proposes a novel FD method using multi-feature fusion scheme and an Improved Domain Adversarial Neural Network (IDANN). Firstly, the Fast Fourier Transform (FFT) is utilized for time-to-frequency domain conversion of raw signals. Then, the multi-feature fusion scheme is adopted to fuse the spectral samples with different working conditions, which uses multi-branch convolution layers as feature extractor and fuser. After that, the fused features are fed into IDANN as input, and the adversarial training strategy is used to train the IDANN model until an ideal equilibrium state is achieved. Finally, the feature extractor and label predictor are separated from the trained IDANN model for classification of health conditions. To verify the performance of IDANN, two public bearing datasets from Case Western Reserve University (CWRU) and Paderborn University are utilized, and results show that IDANN achieves superior diagnosis performance by making full use of multi-source of signal data compared with other conventional or DL-based diagnosis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流窜意识发布了新的文献求助10
刚刚
王绪威发布了新的文献求助10
1秒前
1秒前
5秒前
乐乐应助川不辞盈采纳,获得10
5秒前
7秒前
8秒前
you完成签到,获得积分10
9秒前
9秒前
Hello应助渊崖曙春采纳,获得10
10秒前
科研通AI5应助欣慰的以云采纳,获得10
10秒前
李健应助Kiki采纳,获得10
12秒前
鱼羊明完成签到 ,获得积分10
12秒前
筱芯爱上神完成签到 ,获得积分10
13秒前
一川烟草发布了新的文献求助10
14秒前
theo发布了新的文献求助250
15秒前
桐桐应助贪玩的映之采纳,获得10
16秒前
小星星完成签到 ,获得积分10
21秒前
22秒前
23秒前
ltttaaaa完成签到 ,获得积分10
24秒前
甜甜安露完成签到 ,获得积分10
25秒前
BEYOND啊完成签到 ,获得积分10
28秒前
流窜意识关注了科研通微信公众号
28秒前
hujinhua发布了新的文献求助10
29秒前
彭于晏应助刘凯采纳,获得10
29秒前
31秒前
32秒前
32秒前
34秒前
34秒前
ccc完成签到 ,获得积分10
35秒前
moyawen完成签到,获得积分20
36秒前
淡淡智宸发布了新的文献求助10
39秒前
云栈出谷发布了新的文献求助10
40秒前
40秒前
嘿嘿呼发布了新的文献求助10
40秒前
40秒前
浮游应助生椰拿铁死忠粉采纳,获得10
40秒前
优秀凡波发布了新的文献求助10
41秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126032
求助须知:如何正确求助?哪些是违规求助? 4329689
关于积分的说明 13491683
捐赠科研通 4164660
什么是DOI,文献DOI怎么找? 2283026
邀请新用户注册赠送积分活动 1284135
关于科研通互助平台的介绍 1223522