A multi-feature fusion-based domain adversarial neural network for fault diagnosis of rotating machinery

特征(语言学) 断层(地质) 人工智能 计算机科学 时域 卷积(计算机科学) 模式识别(心理学) 领域(数学分析) 频域 人工神经网络 快速傅里叶变换 特征提取 数据挖掘 深度学习 机器学习 算法 计算机视觉 数学 数学分析 哲学 语言学 地震学 地质学
作者
Dong Zhang,Lili Zhang
出处
期刊:Measurement [Elsevier BV]
卷期号:200: 111576-111576 被引量:27
标识
DOI:10.1016/j.measurement.2022.111576
摘要

Deep learning (DL)-based Fault Diagnosis (FD) methods have been wildly used in the industry domain for the guarantee of rotating machinery. Training these models often deserver abundant labeled data from complex or variable working conditions. However, it is knotty to obtain massive data of different types of faults for the working condition of interest in engineering practice which also greatly hinders the improvement of DL-based FD methods. In addition, exiting DL-based method could not achieve satisfactory diagnosis results when the working condition between source-domain (training data) and target-domain (testing data) is different. This paper proposes a novel FD method using multi-feature fusion scheme and an Improved Domain Adversarial Neural Network (IDANN). Firstly, the Fast Fourier Transform (FFT) is utilized for time-to-frequency domain conversion of raw signals. Then, the multi-feature fusion scheme is adopted to fuse the spectral samples with different working conditions, which uses multi-branch convolution layers as feature extractor and fuser. After that, the fused features are fed into IDANN as input, and the adversarial training strategy is used to train the IDANN model until an ideal equilibrium state is achieved. Finally, the feature extractor and label predictor are separated from the trained IDANN model for classification of health conditions. To verify the performance of IDANN, two public bearing datasets from Case Western Reserve University (CWRU) and Paderborn University are utilized, and results show that IDANN achieves superior diagnosis performance by making full use of multi-source of signal data compared with other conventional or DL-based diagnosis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助哎呦你干嘛采纳,获得10
刚刚
刚刚
2秒前
3秒前
zui发布了新的文献求助10
4秒前
浮游应助Luhan采纳,获得10
6秒前
张文博发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
我是老大应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
热心子轩应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
阿瓦达啃大瓜完成签到,获得积分10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
9秒前
微尘之末发布了新的文献求助10
10秒前
甜蜜屁池完成签到,获得积分10
11秒前
mly发布了新的文献求助10
11秒前
tyy完成签到,获得积分10
12秒前
lalala完成签到 ,获得积分10
15秒前
大黄黄发布了新的文献求助100
16秒前
hyporcite发布了新的文献求助50
18秒前
20秒前
24秒前
24秒前
25秒前
26秒前
东少完成签到,获得积分10
29秒前
Owen应助梦希陌采纳,获得10
29秒前
Druid发布了新的文献求助10
30秒前
31秒前
量子星尘发布了新的文献求助10
31秒前
fiona完成签到 ,获得积分10
32秒前
江峰发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4586078
求助须知:如何正确求助?哪些是违规求助? 4002708
关于积分的说明 12390961
捐赠科研通 3678812
什么是DOI,文献DOI怎么找? 2027659
邀请新用户注册赠送积分活动 1061125
科研通“疑难数据库(出版商)”最低求助积分说明 947484