(Invited) High-Performance 2D Tellurium Transistors Towards CMOS Logic Applications

欧姆接触 材料科学 电子迁移率 光电子学 半导体 晶体管 悬空债券 CMOS芯片 带隙 纳米技术 电气工程 电压 工程类 图层(电子) 冶金
作者
Gang Qiu,Yixiu Wang,Wenzhuo Wu,Peide D. Ye
出处
期刊:Meeting abstracts 卷期号:MA2019-02 (13): 869-869
标识
DOI:10.1149/ma2019-02/13/869
摘要

The thirst for novel two-dimensional (2D) materials for ultra-scaled electronics keeps growing during the last decade as the downsizing trend of silicon-based conventional semiconductors is approaching its physical limit. An ideal paradigm of 2D materials suitable for logic device applications should possess high carrier mobility for both type of carriers, good air-stability, controllable doping scheme and a reasonable bandgap. Recently reported hydrothermal growth technique of 2D tellurium (Te) thin films, which meet all the above criteria, offers a new option for 2D material-based CMOS applications. Tellurium is a narrow bandgap p-type semiconductor (0.35 eV) with nearly symmetric mobilities for both electrons and holes of around 700 cm 2 /Vs at room temperature. It has one-dimensional chiral crystal structure and can be grown into 2D films under right conditions. Just like other 2D materials, these 2D facets of Te also contain no dangling bonds and therefore the 2D films can preserve the material properties and have great potential for miniaturizing device geometry in principle. Here we first report systematic investigation of 2D Te p-type transistor performance approaching atomic-thin limit. The device key parameters, such as field-effect mobility, on/off ratio and stability were thoroughly studied as a function of film thickness. The device performance was then optimized through contact and dielectric engineering, and large drive current over 1 A/mm was achieved. We further employed photo-current mapping method to show that rare accumulation-type ohmic contacts were formed using high work function metal (palladium). Finally, we present an atomic layer deposited (ALD) dielectric doping technique to effectively dope the intrinsically p-type channel into n-type with almost symmetric operations for both NMOS and PMOS. Prototypical inverters based on Te CMOS demonstrate great potential of constructing Te-based high-speed CMOS logic circuits. Our work not only established a comprehensive guideline for designing and optimizing 2D Te based CMOS devices, but also provided a device platform to explore versatility of 2D Te from many other perspectives, such as condensed matter physics and thermoelectronics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨天有伞完成签到,获得积分10
1秒前
善良飞丹发布了新的文献求助10
1秒前
摔碎玻璃瓶完成签到,获得积分10
1秒前
俊逸飞雪发布了新的文献求助10
2秒前
刘歌完成签到 ,获得积分10
3秒前
zhaoyichun完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
5秒前
谦让不二发布了新的文献求助10
6秒前
变形金刚完成签到,获得积分10
6秒前
momo102610完成签到,获得积分20
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
彪壮的如松完成签到,获得积分10
7秒前
明天会更好完成签到,获得积分10
7秒前
asdl完成签到,获得积分10
8秒前
小王完成签到,获得积分10
8秒前
again完成签到 ,获得积分10
9秒前
迅速白卉完成签到,获得积分20
9秒前
9秒前
wisdom完成签到,获得积分10
10秒前
10秒前
倾城完成签到,获得积分10
10秒前
doin发布了新的文献求助10
10秒前
果实发布了新的文献求助10
10秒前
10秒前
1223完成签到,获得积分20
11秒前
11秒前
就在咫尺之间完成签到 ,获得积分10
11秒前
典雅大白菜真实的钥匙完成签到,获得积分10
12秒前
12秒前
12秒前
马千贺发布了新的文献求助10
12秒前
12秒前
英俊的铭应助绍成采纳,获得10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960796
求助须知:如何正确求助?哪些是违规求助? 3506987
关于积分的说明 11133209
捐赠科研通 3239307
什么是DOI,文献DOI怎么找? 1790107
邀请新用户注册赠送积分活动 872145
科研通“疑难数据库(出版商)”最低求助积分说明 803149