Thermo-magnetic convection regulating the solidification behavior and energy storage of Fe3O4 nanoparticles composited paraffin wax under the magnetic-field

石蜡 材料科学 磁场 磁性纳米粒子 磁流体 相(物质) 对流 磁能 强度(物理) 纳米颗粒 凝聚态物理 复合材料 纳米技术 机械 磁化 化学 光学 物理 量子力学 有机化学
作者
Wenxuan He,Yijie Zhuang,Yijun Chen,Changhong Wang
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:214: 118617-118617 被引量:8
标识
DOI:10.1016/j.applthermaleng.2022.118617
摘要

Solidification is an essential process in phase-change energy storage and magnetic fields have great effects on it. While the majority of previous studies focused on non-uniform magnetic fields, this study investigated the differences using uniform magnetic fields. The thermo-magnetic convection model and the enthalpy porosity method describe the motion behavior of Fe3O4 nanoparticles under a uniform magnetic field and phase change process. The properties of Fe3O4/paraffin phase change nanocomposites are measured, and a visualization platform is built to verify the numerical model. The effect and mechanism of direction and intensity of magnetic induction, nanoparticle concentration on solidification performance, heat transfer, and energy release are investigated. Results showed that magnetic field could promote or inhibit solidification depending on its direction. The degree of global regulation increased with the concentration of nanoparticle and magnetic induction intensity, while the local nonuniformity increased or decreased under forward or reverse magnetic fields. The solid phase fraction and energy release of the cavity under positive or negative magnetic fields increased or decreased maximally by 29.2%, 19.23% or 4.6%, and 3.88% compared with paraffin. Essentially, the regulation was the result of different motion behaviors of nanoparticles in the liquid phase controlled by Kelvin force. In addition, methods and optimization suggestions for regulation were proposed, which were expected to provide a reference for the design of controllable energy storage devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
我想毕业发布了新的文献求助10
1秒前
2秒前
星辰大海应助Jared采纳,获得100
2秒前
3秒前
3秒前
3秒前
深情安青应助欣喜的半鬼采纳,获得10
3秒前
king发布了新的文献求助10
4秒前
宝贝发布了新的文献求助10
4秒前
4秒前
4秒前
lzxucn发布了新的文献求助10
4秒前
英姑应助牛牛采纳,获得10
4秒前
4秒前
午夜太阳完成签到 ,获得积分10
4秒前
asipilin完成签到,获得积分10
5秒前
gogogo发布了新的文献求助20
5秒前
5秒前
伊尔完成签到,获得积分10
5秒前
chunfengfusu发布了新的文献求助20
5秒前
5秒前
搜集达人应助柠溪采纳,获得10
5秒前
王靖雯完成签到,获得积分10
6秒前
Jane发布了新的文献求助80
6秒前
科研通AI6应助墨墨采纳,获得10
6秒前
6秒前
7秒前
烟花应助Melan采纳,获得10
7秒前
7秒前
Janus完成签到,获得积分10
7秒前
FashionBoy应助俭朴的柚子采纳,获得20
8秒前
9秒前
ldld发布了新的文献求助10
9秒前
陈美宏发布了新的文献求助10
9秒前
我想毕业完成签到,获得积分10
10秒前
科研通AI6应助蓝色花生豆采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660809
求助须知:如何正确求助?哪些是违规求助? 4835652
关于积分的说明 15091990
捐赠科研通 4819406
什么是DOI,文献DOI怎么找? 2579257
邀请新用户注册赠送积分活动 1533773
关于科研通互助平台的介绍 1492565