Precise damage shaping in self-sensing composites using electrical impedance tomography and genetic algorithms

电阻抗断层成像 材料科学 复合材料 分层(地质) 断层摄影术 光学 物理 俯冲 构造学 生物 古生物学
作者
Hashim Hassan,Tyler N. Tallman
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:22 (1): 372-387 被引量:10
标识
DOI:10.1177/14759217221077034
摘要

Fiber-reinforced composites with nanofiller-modified polymer matrices have immense potential to improve the safety of high-risk engineering structures. These materials are intrinsically self-sensing because their electrical conductivity is affected by deformations and damage. This property, known as piezoresistivity, has been extensively leveraged for conductivity-based damage detection via electrical resistance change methods and tomographic imaging techniques such as electrical impedance tomography (EIT). Although these techniques are very effective at detecting the presence of damage, they suffer from an inability to provide precise information about damage shape, size, or mechanism. This is particularly detrimental for laminated composites which can suffer from complex failure modes, such as delaminations, that are difficult to detect. To that end, we herein propose a new technique for precisely determining damage shape and size in self-sensing composites. Our technique makes use of a genetic algorithm (GA) integrated with realistic physics-based damage models to recover precise damage shape from conductivity changes imaged via EIT. We experimentally validate this technique on carbon nanofiber (CNF)-modified glass fiber-reinforced polymer (GFRP) laminates by considering two specific damage mechanisms: through-holes (as a function of number, size, and location) and impact-induced delaminations (as a function of impact energy). Our results show that this novel technique can accurately reconstruct multiple through-holes with radii as small as 1.19 mm and delaminations caused by low velocity impacts. The reconstructed delamination shapes and sizes were shown to be in much better agreement with the actual delaminations observed using optical microscopy than is achievable by traditional EIT alone. These findings illustrate that coupling piezoresistivity with conductivity-based spatial imaging techniques and physics-based inversion strategies can enable damage shaping capabilities in self-sensing composite structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
重要的哈密瓜完成签到 ,获得积分10
刚刚
会飞的云完成签到 ,获得积分10
1秒前
1秒前
毕不了业的凡阿哥完成签到,获得积分10
1秒前
野子发布了新的文献求助10
1秒前
berry完成签到,获得积分10
2秒前
3秒前
LUNWENREQUEST发布了新的文献求助10
3秒前
大模型应助匹诺曹采纳,获得10
4秒前
ding应助过时的又槐采纳,获得10
5秒前
8秒前
鄙视注册完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
落寞溪灵完成签到 ,获得积分10
12秒前
玖玖柒idol完成签到,获得积分10
12秒前
曌虞完成签到,获得积分10
12秒前
13秒前
啥,这都是啥完成签到,获得积分10
13秒前
皮皮桂发布了新的文献求助10
14秒前
15秒前
大大发布了新的文献求助10
15秒前
16秒前
orixero应助wang1090采纳,获得30
18秒前
18秒前
l11x29发布了新的文献求助10
20秒前
lin完成签到,获得积分10
20秒前
大侠发布了新的文献求助10
21秒前
21秒前
是锦锦呀完成签到,获得积分10
21秒前
21秒前
李秋静发布了新的文献求助10
22秒前
zhen发布了新的文献求助50
24秒前
是锦锦呀发布了新的文献求助60
24秒前
Khr1stINK发布了新的文献求助10
26秒前
27秒前
NexusExplorer应助Dddd采纳,获得10
29秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808