An affinity propagated clustering aided computerized Inherent Seeded Region Growing and Deep learned Marching Cubes Algorithm (ISRG‐DMCA) based three dimensional image reconstruction approach

行进中的立方体 计算机科学 人工智能 图像(数学) 计算机视觉 聚类分析 算法 快速行进算法 体积热力学 MATLAB语言 可视化 物理 量子力学 操作系统
作者
Sushitha Susan Joseph,Aju Dennisan
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:32 (6): 2240-2254 被引量:2
标识
DOI:10.1002/ima.22736
摘要

Abstract In this manuscript, the novel three dimensional (3D) image reconstruction approach based on affinity propagated clustering aided computerized Inherent Seeded Region Growing and Deep learned Marching Cubes Algorithm (ISRG‐DMCA) is proposed. The major purpose of this manuscript is to divide the brain tumor based on Shapelets. Here, the information about the shape/depth that can be obtained in every two dimensional (2D) image on the image stack is handled to acquire a 3D reconstruction, which provides high accurate 3D view of tumor Region of Interest (ROI). Then, the 3D model is rendered with the help of the proposed Deep learned Marching Cubes Algorithm (Deep MCA) at 3D reconstruction technique. The performance of the proposed method is executed in MATLAB. The simulation results show that the proposed ISRG‐DMCA algorithm attains a higher detection rate 14.117%, 5.435%, higher accuracy rate 9.556%, 26.41% and lower execution time 66.667%, 75%, compared with the existing methods, like Improved Marching Cubes Algorithm (IMCA), Improved CNN‐CRF method, respectively. In the proposed ISRG‐DMCA method, the volume of the tumor has a length of 2.56 mm. Finally, the simulation outcomes demonstrate that the proposed ISRG‐DMCA method can be able to find the optimal solutions efficiently and accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
moroa完成签到,获得积分10
1秒前
aabb完成签到,获得积分10
1秒前
3秒前
cccu完成签到 ,获得积分10
3秒前
3秒前
张果果果完成签到 ,获得积分10
4秒前
6秒前
cccu关注了科研通微信公众号
6秒前
马里布农奴完成签到,获得积分10
7秒前
畅快的毛衣应助笨笨采纳,获得10
10秒前
10秒前
汉堡包应助阳佟之槐采纳,获得10
10秒前
11秒前
13秒前
Yael完成签到,获得积分10
13秒前
14秒前
温暖的幼枫完成签到,获得积分10
14秒前
科研通AI5应助耶耶耶采纳,获得10
15秒前
16秒前
汉堡包应助第一步催化B采纳,获得10
17秒前
19秒前
机灵海之发布了新的文献求助10
21秒前
醉熏的小土豆完成签到,获得积分10
21秒前
21秒前
24秒前
隐形曼青应助文章快快来采纳,获得10
24秒前
GRJ发布了新的文献求助10
25秒前
25秒前
25秒前
melon发布了新的文献求助10
25秒前
迟大猫应助LU采纳,获得10
27秒前
28秒前
28秒前
其7发布了新的文献求助10
28秒前
孤独患者发布了新的文献求助10
28秒前
Y毓发布了新的文献求助10
28秒前
lyh应助guozizi采纳,获得10
29秒前
222发布了新的文献求助10
29秒前
29秒前
小破网完成签到 ,获得积分0
30秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483822
求助须知:如何正确求助?哪些是违规求助? 3073054
关于积分的说明 9129181
捐赠科研通 2764683
什么是DOI,文献DOI怎么找? 1517299
邀请新用户注册赠送积分活动 702065
科研通“疑难数据库(出版商)”最低求助积分说明 700880