已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Gas Recognition in E-Nose System: A Review

电子鼻 人工智能 计算机科学 人工神经网络 模式识别(心理学) 主成分分析 卷积神经网络 噪音(视频) 领域(数学) 特征提取 机器学习 数学 纯数学 图像(数学)
作者
Hong Chen,Dexuan Huo,Jilin Zhang
出处
期刊:IEEE Transactions on Biomedical Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:16 (2): 169-184 被引量:83
标识
DOI:10.1109/tbcas.2022.3166530
摘要

Gas recognition is essential in an electronic nose (E-nose) system, which is responsible for recognizing multivariate responses obtained by gas sensors in various applications. Over the past decades, classical gas recognition approaches such as principal component analysis (PCA) have been widely applied in E-nose systems. In recent years, artificial neural network (ANN) has revolutionized the field of E-nose, especially spiking neural network (SNN). In this paper, we investigate recent gas recognition methods for E-nose, and compare and analyze them in terms of algorithms and hardware implementations. We find each classical gas recognition method has a relatively fixed framework and a few parameters, which makes it easy to be designed and perform well with limited gas samples, but weak in multi-gas recognition under noise. While ANN-based methods obtain better recognition accuracy with flexible architectures and lots of parameters. However, some ANNs are too complex to be implemented in portable E-nose systems, such as deep convolutional neural networks (CNNs). In contrast, SNN-based gas recognition methods achieve satisfying accuracy and recognize more types of gases, and could be implemented with energy-efficient hardware, which makes them a promising candidate in multi-gas identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Acer完成签到 ,获得积分10
1秒前
yar应助zafan采纳,获得10
1秒前
快乐冰之完成签到 ,获得积分10
2秒前
在水一方完成签到 ,获得积分10
13秒前
默默的乘风完成签到 ,获得积分10
17秒前
小星星完成签到 ,获得积分10
19秒前
27秒前
朱笑白完成签到 ,获得积分10
30秒前
30秒前
31秒前
张杰列夫完成签到 ,获得积分10
32秒前
今后应助俭朴的猫咪采纳,获得10
37秒前
sunshine完成签到 ,获得积分10
39秒前
研友_ZGRvon完成签到,获得积分0
40秒前
小叶完成签到 ,获得积分10
44秒前
huazhangchina完成签到 ,获得积分10
44秒前
ZhaoY完成签到,获得积分10
46秒前
脑洞疼应助ZhaoY采纳,获得10
50秒前
优雅的小蘑菇完成签到 ,获得积分10
51秒前
喜悦的飞飞完成签到,获得积分10
52秒前
檀123完成签到 ,获得积分10
53秒前
英姑应助nenoaowu采纳,获得10
57秒前
万物安生完成签到,获得积分10
1分钟前
Ephemeral完成签到 ,获得积分10
1分钟前
wave关注了科研通微信公众号
1分钟前
落忆完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
cxwong发布了新的文献求助10
1分钟前
Lesterem完成签到 ,获得积分10
1分钟前
dong完成签到,获得积分10
1分钟前
1分钟前
wave发布了新的文献求助10
1分钟前
dong发布了新的文献求助10
1分钟前
田様应助cxwong采纳,获得10
1分钟前
乐乐乐乐乐乐完成签到,获得积分10
1分钟前
Mason完成签到,获得积分10
1分钟前
1分钟前
m1nt完成签到,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310983
求助须知:如何正确求助?哪些是违规求助? 2943826
关于积分的说明 8516538
捐赠科研通 2619121
什么是DOI,文献DOI怎么找? 1432072
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649802