Low-frequency Locally Resonant Band Gap of the Two-dimensional Quasi-zero-stiffness Metamaterials

超材料 谐振器 刚度 各向异性 频带 物理 材料科学 光学
作者
Qida Lin,Jiaxi Zhou,Kai Wang,Daolin Xu,Guilin Wen,Qiang Wang,Changqi Cai
出处
期刊:International Journal of Mechanical Sciences [Elsevier]
卷期号:: 107230-107230
标识
DOI:10.1016/j.ijmecsci.2022.107230
摘要

• Novel two-dimensional (2D) quasi-zero-stiffness (QZS) metamaterials are engineered. • Low-frequency complete band gaps are fulfilled by the 2D QZS metamaterials. • Remarkable tunability (∼32%) is realized by adjusting the pre-compression and added mass. • In virtue of anisotropy, the complete band gap can be tuned. This paper develops a novel type of two-dimensional (2D) locally resonant (LR) metamaterials with quasi-zero-stiffness (QZS) property both in the horizontal and vertical directions. The unit cell, constructed by attaching the 2D QZS resonator onto a square frame, is periodically arranged to form the QZS metamaterial. The QZS property along two directions is realized by design optimization of the elastic elements of the resonator, namely folded slender beams. Furthermore, the dispersion relation of the 2D QZS metamaterial is computed by developing a theoretical model for continuum structure with local resonators. Then, the formation mechanism of the band gap attributed to the local resonance is revealed by eigenmode shapes of unit cell and the displacement fields over the 2D QZS metamaterial. The results show that the lower-frequency complete band gap can be achieved by pre-compressing the 2D QZS resonators and increasing the added mass. Specifically, the starting frequency of the complete band gap can be reduced by 32% owing to the larger pre-compression and added mass. Moreover, the anisotropy of pre-compressions along the horizontal and vertical directions can be utilized to make the complete band gap overlay different ranges of frequency. This study provides an avenue for achieving a low-frequency complete band gap regardless of the incident direction of in-plane wave.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
niu完成签到,获得积分10
刚刚
什么东西完成签到,获得积分10
1秒前
感冒药完成签到,获得积分10
2秒前
脑洞疼应助绿袖子采纳,获得10
2秒前
江枫发布了新的文献求助10
4秒前
培a完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
我是老大应助Winnie采纳,获得10
6秒前
shizx完成签到,获得积分10
6秒前
8秒前
Hou完成签到 ,获得积分10
9秒前
Genius完成签到 ,获得积分10
9秒前
10秒前
10秒前
无zzz的人发布了新的文献求助10
11秒前
害羞的夏柳完成签到,获得积分10
11秒前
Winnie完成签到,获得积分20
12秒前
14秒前
lay发布了新的文献求助10
14秒前
一二发布了新的文献求助10
14秒前
CodeCraft应助激昂的飞松采纳,获得10
15秒前
扶摇完成签到 ,获得积分10
15秒前
樱悼柳雪完成签到,获得积分10
16秒前
16秒前
16秒前
呜呜发布了新的文献求助10
16秒前
17秒前
善学以致用应助pxuanl98采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得10
18秒前
猪猪hero应助科研通管家采纳,获得10
18秒前
今后应助科研通管家采纳,获得30
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
猪猪hero应助科研通管家采纳,获得10
18秒前
18秒前
今后应助科研通管家采纳,获得30
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778469
求助须知:如何正确求助?哪些是违规求助? 5641573
关于积分的说明 15449483
捐赠科研通 4910143
什么是DOI,文献DOI怎么找? 2642399
邀请新用户注册赠送积分活动 1590239
关于科研通互助平台的介绍 1544574