亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence models for diagnosing gingivitis and periodontal disease: A systematic review

牙龈炎 医学 牙槽 牙周病学 牙科 牙周病 牙周炎 诊断准确性 梅德林 射线照相术 口腔正畸科 系统回顾 放射科 政治学 法学
作者
Marta Revilla‐León,Miguel Gómez‐Polo,Abdul Basir Barmak,Wardah Inam,Joseph Y K Kan,John C. Kois,Orhan Akal
出处
期刊:Journal of Prosthetic Dentistry [Elsevier]
卷期号:130 (6): 816-824 被引量:52
标识
DOI:10.1016/j.prosdent.2022.01.026
摘要

Abstract

Statement of problem

Artificial intelligence (AI) models have been developed for periodontal applications, including diagnosing gingivitis and periodontal disease, but their accuracy and maturity of the technology remain unclear.

Purpose

The purpose of this systematic review was to evaluate the performance of the AI models for detecting dental plaque and diagnosing gingivitis and periodontal disease.

Material and methods

A review was performed in 4 databases: MEDLINE/PubMed, World of Science, Cochrane, and Scopus. A manual search was also conducted. Studies were classified into 4 groups: detecting dental plaque, diagnosis of gingivitis, diagnosis of periodontal disease from intraoral images, and diagnosis of alveolar bone loss from periapical, bitewing, and panoramic radiographs. Two investigators evaluated the studies independently by applying the Joanna Briggs Institute critical appraisal. A third examiner was consulted to resolve any lack of consensus.

Results

Twenty-four articles were included: 2 studies developed AI models for detecting plaque, resulting in accuracy ranging from 73.6% to 99%; 7 studies assessed the ability to diagnose gingivitis from intraoral photographs reporting an accuracy between 74% and 78.20%; 1 study used fluorescent intraoral images to diagnose gingivitis reporting 67.7% to 73.72% accuracy; 3 studies assessed the ability to diagnose periodontal disease from intraoral photographs with an accuracy between 47% and 81%, and 11 studies evaluated the performance of AI models for detecting alveolar bone loss from radiographic images reporting an accuracy between 73.4% and 99%.

Conclusions

AI models for periodontology applications are still in development but might provide a powerful diagnostic tool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leslie完成签到 ,获得积分10
10秒前
科研通AI2S应助showrain采纳,获得10
11秒前
12秒前
姚芭蕉完成签到 ,获得积分0
32秒前
42秒前
Jason发布了新的文献求助10
46秒前
小强完成签到 ,获得积分10
1分钟前
华仔应助Jason采纳,获得10
1分钟前
1分钟前
mengyuhuan完成签到 ,获得积分0
1分钟前
fleeper发布了新的文献求助10
1分钟前
DrCuiTianjin完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
lik发布了新的文献求助10
2分钟前
2分钟前
科研通AI2S应助lik采纳,获得10
3分钟前
小巫发布了新的文献求助10
3分钟前
dolphin完成签到 ,获得积分0
3分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
小巫发布了新的文献求助10
4分钟前
Jasper应助cheesy采纳,获得10
4分钟前
去去去去发布了新的文献求助10
4分钟前
5分钟前
cheesy发布了新的文献求助10
5分钟前
5分钟前
FMHChan完成签到,获得积分10
5分钟前
风信子deon01完成签到,获得积分10
5分钟前
5分钟前
于洋完成签到 ,获得积分10
6分钟前
ZhJF完成签到 ,获得积分10
6分钟前
充电宝应助科研通管家采纳,获得10
6分钟前
半岛岛发布了新的文献求助10
6分钟前
科研通AI2S应助athena采纳,获得10
6分钟前
斯文败类应助去去去去采纳,获得10
7分钟前
小叶完成签到 ,获得积分10
7分钟前
sallltyyy完成签到,获得积分10
7分钟前
kuoping完成签到,获得积分10
7分钟前
半岛岛完成签到,获得积分10
8分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139573
求助须知:如何正确求助?哪些是违规求助? 2790458
关于积分的说明 7795318
捐赠科研通 2446925
什么是DOI,文献DOI怎么找? 1301511
科研通“疑难数据库(出版商)”最低求助积分说明 626248
版权声明 601159