生物过程
代谢工程
工业发酵
生物技术
生物
食品科学
发酵
基因
生物化学
古生物学
作者
Yimeng Zuo,Feng Xiao,Jucan Gao,Cuifang Ye,Lihong Jiang,Chang Dong,Jiazhang Lian
标识
DOI:10.1021/acs.jafc.2c02353
摘要
Santalene, a major component of the sandalwood essential oil, is a typical representative of sesquiterpenes and has important applications in medicine, food, flavors, and other fields. Due to the limited supply of natural sandalwood resources, there is a growing interest in engineering microbial cell factories for the mass production of santalene. In the present study, Komagataella phaffii (also known as Pichia pastoris) was established as a cell factory for high-level production of α-santalene for the first time. The metabolic fluxes were rewired toward α-santalene biosynthesis through the optimization of promoters to drive the expression of the α-santalene synthase (SAS) gene, overexpression of the key mevalonate pathway genes (i.e., tHMG1, IDI1, and ERG20), and multi-copy integration of the SAS expression cassette. In combination with medium optimization and bioprocess engineering, the optimal strain (STE-9) was able to produce α-santalene with a titer as high as 829.8 ± 70.6 mg/L, 4.4 ± 0.3 g/L, and 21.5 ± 1.6 g/L in a shake flask, batch fermenter, and fed-batch fermenter, respectively. These represented the highest production of α-santalene ever reported, highlighting the advantages of K. phaffii cell factories for the production of terpenoids and other natural products.
科研通智能强力驱动
Strongly Powered by AbleSci AI