亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interannual and seasonal variations of permafrost thaw depth on the Qinghai-Tibetan Plateau: A comparative study using long short-term memory, convolutional neural networks, and random forest

永久冻土 环境科学 随机森林 滞后 高原(数学) 卷积神经网络 气候变化 气候学 自然地理学 全球变暖 地质学 机器学习 计算机科学 统计 地理 数学 海洋学 数学分析
作者
Qi Liu,Jie Niu,Ping Lü,Feifei Dong,Fujun Zhou,Xianglian Meng,Wei Xu,Shan Li,Bill X. Hu
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:838: 155886-155886 被引量:22
标识
DOI:10.1016/j.scitotenv.2022.155886
摘要

An accurate estimation of thaw depth is critical to understanding permafrost changes due to climate warming on the Qinghai-Tibetan Plateau (QTP). However, previous studies mainly focused on the interannual changes of active layer thickness (ALT) across the QTP, and little is known about the changes in the seasonal thaw depth. Machine learning (ML) is a critical tool to accurately estimate the ALT of permafrost, but a direct comparison of ML with deep learning (DL) in ALT projection regarding the model performance is still lacking. Here, ML, namely random forest (RF), and DL algorithms like convolutional neural networks (CNN) and long short-term memory (LSTM) neural networks were compared to estimate the interannual changes of ALT and seasonal thaw depth on the QTP. Meteorological series, in-situ collected ALT observations, and geospatial information were used as predictors. The results show that both ML and DL methods are capable of estimating ALT and seasonal thaw depth in permafrost areas. The CNN and LSTM models developed using longer lagging times exhibit better performance in thaw depth prediction while the RF models are either mediocre or sometimes even worse as the lagging time increases. The results show that the ALT from 2003 to 2011 on the QTP exhibits an increasing trend, especially in the northern region. In addition, 68.8%, 88.7%, 52.5%, and 47.5% of the permafrost regions on the QTP have deepened seasonal thaw depth in spring, summer, autumn, and winter, respectively. The correlation between air temperature and permafrost thaw depth ranges from 0.65 to 1 with the time lag ranging from 1 to 32 days. This study shows that ML and DL can be effectively used in retrieving ALT and seasonal thaw depth of permafrost, and could present an efficient way to figure out the interannual and seasonal variations of permafrost conditions under climate warming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理飞风完成签到,获得积分10
4秒前
28秒前
饼子完成签到 ,获得积分10
29秒前
NiNi完成签到 ,获得积分10
30秒前
orangel发布了新的文献求助10
34秒前
搜集达人应助orangel采纳,获得10
39秒前
40秒前
40秒前
乐乐应助科研通管家采纳,获得10
50秒前
51秒前
1分钟前
1分钟前
1分钟前
无敌霸王花应助null采纳,获得30
1分钟前
畅畅发布了新的文献求助10
1分钟前
宝石发布了新的文献求助10
1分钟前
辛巴发布了新的文献求助10
1分钟前
宝石完成签到,获得积分10
1分钟前
1分钟前
2分钟前
辣辣完成签到,获得积分10
2分钟前
蛋蛋完成签到,获得积分10
2分钟前
温wen完成签到,获得积分10
2分钟前
cuddly完成签到 ,获得积分10
2分钟前
Ava应助duduwind采纳,获得10
2分钟前
2分钟前
生动的醉薇完成签到,获得积分10
2分钟前
酷波er应助科研通管家采纳,获得30
2分钟前
2分钟前
3分钟前
orangel发布了新的文献求助10
3分钟前
3分钟前
善学以致用应助orangel采纳,获得10
3分钟前
3分钟前
小解完成签到,获得积分10
3分钟前
3分钟前
xjynh发布了新的文献求助10
3分钟前
Smar_zcl应助null采纳,获得50
3分钟前
内向雪旋完成签到,获得积分10
3分钟前
完美世界应助xjynh采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413236
求助须知:如何正确求助?哪些是违规求助? 4530397
关于积分的说明 14122909
捐赠科研通 4445358
什么是DOI,文献DOI怎么找? 2439191
邀请新用户注册赠送积分活动 1431244
关于科研通互助平台的介绍 1408692