Interannual and seasonal variations of permafrost thaw depth on the Qinghai-Tibetan Plateau: A comparative study using long short-term memory, convolutional neural networks, and random forest

永久冻土 环境科学 随机森林 滞后 高原(数学) 卷积神经网络 气候变化 气候学 自然地理学 全球变暖 地质学 机器学习 计算机科学 统计 地理 数学 海洋学 数学分析
作者
Qi Liu,Jie Niu,Ping Lü,Feifei Dong,Fujun Zhou,Xianglian Meng,Wei Xu,Shan Li,Bill X. Hu
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:838: 155886-155886 被引量:22
标识
DOI:10.1016/j.scitotenv.2022.155886
摘要

An accurate estimation of thaw depth is critical to understanding permafrost changes due to climate warming on the Qinghai-Tibetan Plateau (QTP). However, previous studies mainly focused on the interannual changes of active layer thickness (ALT) across the QTP, and little is known about the changes in the seasonal thaw depth. Machine learning (ML) is a critical tool to accurately estimate the ALT of permafrost, but a direct comparison of ML with deep learning (DL) in ALT projection regarding the model performance is still lacking. Here, ML, namely random forest (RF), and DL algorithms like convolutional neural networks (CNN) and long short-term memory (LSTM) neural networks were compared to estimate the interannual changes of ALT and seasonal thaw depth on the QTP. Meteorological series, in-situ collected ALT observations, and geospatial information were used as predictors. The results show that both ML and DL methods are capable of estimating ALT and seasonal thaw depth in permafrost areas. The CNN and LSTM models developed using longer lagging times exhibit better performance in thaw depth prediction while the RF models are either mediocre or sometimes even worse as the lagging time increases. The results show that the ALT from 2003 to 2011 on the QTP exhibits an increasing trend, especially in the northern region. In addition, 68.8%, 88.7%, 52.5%, and 47.5% of the permafrost regions on the QTP have deepened seasonal thaw depth in spring, summer, autumn, and winter, respectively. The correlation between air temperature and permafrost thaw depth ranges from 0.65 to 1 with the time lag ranging from 1 to 32 days. This study shows that ML and DL can be effectively used in retrieving ALT and seasonal thaw depth of permafrost, and could present an efficient way to figure out the interannual and seasonal variations of permafrost conditions under climate warming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伶俐的安波完成签到,获得积分10
刚刚
停婷发布了新的文献求助10
刚刚
leisure发布了新的文献求助10
刚刚
完美世界应助HGQ采纳,获得10
刚刚
聪明的三问完成签到,获得积分10
1秒前
小young完成签到 ,获得积分10
2秒前
霸气乘风发布了新的文献求助20
3秒前
HenryXiao发布了新的文献求助10
4秒前
科研通AI2S应助wmx采纳,获得10
4秒前
4秒前
yaoyulin完成签到,获得积分20
5秒前
xyx945应助苹果采纳,获得10
5秒前
羞涩的怀蝶完成签到,获得积分10
6秒前
舍瓦完成签到,获得积分10
6秒前
6秒前
Hello应助书虫采纳,获得10
7秒前
7秒前
FashionBoy应助leisure采纳,获得10
8秒前
9秒前
9秒前
9秒前
10秒前
与山发布了新的文献求助10
10秒前
zyw发布了新的文献求助10
11秒前
朦胧的晓山完成签到,获得积分10
11秒前
万能图书馆应助steventj采纳,获得10
11秒前
船船应助libobobo采纳,获得10
11秒前
囚徒发布了新的文献求助10
11秒前
年年完成签到,获得积分10
12秒前
12秒前
GingerF应助CC采纳,获得80
12秒前
HGQ发布了新的文献求助10
12秒前
13秒前
爱听歌的书本完成签到,获得积分10
13秒前
邹万恶发布了新的文献求助10
13秒前
13秒前
13秒前
麦香鱼完成签到 ,获得积分10
13秒前
DD完成签到,获得积分10
14秒前
我超凶的发布了新的文献求助20
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650