Interannual and seasonal variations of permafrost thaw depth on the Qinghai-Tibetan Plateau: A comparative study using long short-term memory, convolutional neural networks, and random forest

永久冻土 环境科学 随机森林 滞后 高原(数学) 卷积神经网络 气候变化 气候学 自然地理学 全球变暖 地质学 机器学习 计算机科学 统计 地理 数学 海洋学 数学分析
作者
Qi Liu,Jie Niu,Ping Lü,Feifei Dong,Fujun Zhou,Xianglian Meng,Wei Xu,Shan Li,Bill X. Hu
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:838: 155886-155886 被引量:22
标识
DOI:10.1016/j.scitotenv.2022.155886
摘要

An accurate estimation of thaw depth is critical to understanding permafrost changes due to climate warming on the Qinghai-Tibetan Plateau (QTP). However, previous studies mainly focused on the interannual changes of active layer thickness (ALT) across the QTP, and little is known about the changes in the seasonal thaw depth. Machine learning (ML) is a critical tool to accurately estimate the ALT of permafrost, but a direct comparison of ML with deep learning (DL) in ALT projection regarding the model performance is still lacking. Here, ML, namely random forest (RF), and DL algorithms like convolutional neural networks (CNN) and long short-term memory (LSTM) neural networks were compared to estimate the interannual changes of ALT and seasonal thaw depth on the QTP. Meteorological series, in-situ collected ALT observations, and geospatial information were used as predictors. The results show that both ML and DL methods are capable of estimating ALT and seasonal thaw depth in permafrost areas. The CNN and LSTM models developed using longer lagging times exhibit better performance in thaw depth prediction while the RF models are either mediocre or sometimes even worse as the lagging time increases. The results show that the ALT from 2003 to 2011 on the QTP exhibits an increasing trend, especially in the northern region. In addition, 68.8%, 88.7%, 52.5%, and 47.5% of the permafrost regions on the QTP have deepened seasonal thaw depth in spring, summer, autumn, and winter, respectively. The correlation between air temperature and permafrost thaw depth ranges from 0.65 to 1 with the time lag ranging from 1 to 32 days. This study shows that ML and DL can be effectively used in retrieving ALT and seasonal thaw depth of permafrost, and could present an efficient way to figure out the interannual and seasonal variations of permafrost conditions under climate warming.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
qiao发布了新的文献求助10
1秒前
天真豪英完成签到 ,获得积分10
1秒前
小王完成签到,获得积分10
1秒前
1秒前
2秒前
天天快乐应助Always采纳,获得10
2秒前
2秒前
汉堡包应助铃兰采纳,获得10
3秒前
凝凝小发布了新的文献求助10
3秒前
新晋牛马发布了新的文献求助10
3秒前
3秒前
922完成签到,获得积分10
3秒前
LL完成签到,获得积分10
3秒前
4秒前
费飞扬发布了新的文献求助10
5秒前
xxzztt完成签到,获得积分10
5秒前
5秒前
5秒前
link咩完成签到,获得积分10
5秒前
6秒前
伍六柒完成签到,获得积分20
6秒前
mm发布了新的文献求助10
7秒前
7秒前
小白完成签到,获得积分10
7秒前
杨德帅发布了新的文献求助10
7秒前
樱桃完成签到,获得积分10
7秒前
熠熠完成签到,获得积分10
7秒前
小茜完成签到 ,获得积分10
7秒前
7秒前
热热发布了新的文献求助10
8秒前
asdfzxcv应助61Cu采纳,获得10
8秒前
宴究生完成签到,获得积分10
9秒前
Ping完成签到,获得积分10
9秒前
克莱完成签到,获得积分10
9秒前
my196755发布了新的文献求助10
9秒前
Ava应助922采纳,获得10
10秒前
SIC完成签到,获得积分10
10秒前
狐狸小姐完成签到,获得积分10
11秒前
whf发布了新的文献求助30
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646235
求助须知:如何正确求助?哪些是违规求助? 4770584
关于积分的说明 15033924
捐赠科研通 4804968
什么是DOI,文献DOI怎么找? 2569335
邀请新用户注册赠送积分活动 1526419
关于科研通互助平台的介绍 1485810