Interannual and seasonal variations of permafrost thaw depth on the Qinghai-Tibetan Plateau: A comparative study using long short-term memory, convolutional neural networks, and random forest

永久冻土 环境科学 随机森林 滞后 高原(数学) 卷积神经网络 气候变化 气候学 自然地理学 全球变暖 地质学 机器学习 计算机科学 统计 地理 数学 数学分析 海洋学
作者
Qi Liu,Jie Niu,Ping Lü,Feifei Dong,Fanqin Zhou,Xianglian Meng,Wei Xu,Shan Li,Bill X. Hu
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:838: 155886-155886 被引量:13
标识
DOI:10.1016/j.scitotenv.2022.155886
摘要

An accurate estimation of thaw depth is critical to understanding permafrost changes due to climate warming on the Qinghai-Tibetan Plateau (QTP). However, previous studies mainly focused on the interannual changes of active layer thickness (ALT) across the QTP, and little is known about the changes in the seasonal thaw depth. Machine learning (ML) is a critical tool to accurately estimate the ALT of permafrost, but a direct comparison of ML with deep learning (DL) in ALT projection regarding the model performance is still lacking. Here, ML, namely random forest (RF), and DL algorithms like convolutional neural networks (CNN) and long short-term memory (LSTM) neural networks were compared to estimate the interannual changes of ALT and seasonal thaw depth on the QTP. Meteorological series, in-situ collected ALT observations, and geospatial information were used as predictors. The results show that both ML and DL methods are capable of estimating ALT and seasonal thaw depth in permafrost areas. The CNN and LSTM models developed using longer lagging times exhibit better performance in thaw depth prediction while the RF models are either mediocre or sometimes even worse as the lagging time increases. The results show that the ALT from 2003 to 2011 on the QTP exhibits an increasing trend, especially in the northern region. In addition, 68.8%, 88.7%, 52.5%, and 47.5% of the permafrost regions on the QTP have deepened seasonal thaw depth in spring, summer, autumn, and winter, respectively. The correlation between air temperature and permafrost thaw depth ranges from 0.65 to 1 with the time lag ranging from 1 to 32 days. This study shows that ML and DL can be effectively used in retrieving ALT and seasonal thaw depth of permafrost, and could present an efficient way to figure out the interannual and seasonal variations of permafrost conditions under climate warming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晨曦将至完成签到,获得积分10
2秒前
IAMXC发布了新的文献求助10
3秒前
北辰完成签到,获得积分10
7秒前
科研通AI2S应助chant采纳,获得10
7秒前
8秒前
没有逗应助YoYo采纳,获得10
8秒前
哈哈哈哈完成签到,获得积分20
12秒前
19秒前
丘比特应助tingting采纳,获得10
21秒前
庆次完成签到 ,获得积分10
21秒前
22秒前
gangan发布了新的文献求助10
25秒前
Denmark发布了新的文献求助10
26秒前
30秒前
tingting发布了新的文献求助10
33秒前
平淡松完成签到 ,获得积分10
33秒前
33秒前
Gaye发布了新的文献求助10
35秒前
yg发布了新的文献求助10
36秒前
小张呢好完成签到,获得积分10
39秒前
顾矜应助风的季节采纳,获得10
40秒前
孤月寒沙影完成签到,获得积分10
42秒前
Wei完成签到 ,获得积分10
42秒前
璇儿完成签到,获得积分10
45秒前
Lucas应助wyd采纳,获得10
47秒前
无敌石墨烯完成签到 ,获得积分10
49秒前
Gaye完成签到,获得积分10
52秒前
liuliuliu完成签到 ,获得积分20
53秒前
56秒前
英姑应助moon采纳,获得20
58秒前
充电宝应助袁大头采纳,获得10
1分钟前
1分钟前
1分钟前
925完成签到,获得积分10
1分钟前
橘仔乐发布了新的文献求助10
1分钟前
只爱吃肠粉完成签到,获得积分10
1分钟前
moon发布了新的文献求助20
1分钟前
sugar完成签到,获得积分10
1分钟前
细心慕凝完成签到 ,获得积分10
1分钟前
站起来蹬是不对的完成签到,获得积分10
1分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140334
求助须知:如何正确求助?哪些是违规求助? 2791068
关于积分的说明 7797887
捐赠科研通 2447569
什么是DOI,文献DOI怎么找? 1301942
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194