Optimum target range bin selection method for time-frequency analysis to detect falls using wideband radar and a lightweight network

箱子 光谱图 计算机科学 宽带 雷达 人工智能 航程(航空) 模式识别(心理学) 计算机视觉 算法 电信 工程类 电子工程 航空航天工程
作者
Mi He,Yang Yi,Qinwen Ping,Ran Dai,Bingwen Liu,Yongjian Nian,Zhu Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:77: 103741-103741
标识
DOI:10.1016/j.bspc.2022.103741
摘要

Wideband bio-radars have been applied to fall behaviour recognition research in the last few years. The optimum target range bin is that the time Doppler spectrogram image of signals of the range time matrix in this range bin is best for the deep learning network to distinguish between falling and non-falling. Thus, selecting an appropriate target range bin for time-frequency analysis is very important for effective fall detection of wideband radar. A K-band wideband frequency modulated continuous wave radar is applied to build a fall detection database of 36 subjects in two scenes. The radar data are pre-processed to obtain range-Doppler spectrograms where the optimum target range bin is selected for the subsequent time-frequency analysis. The original, threshold, and binary time Doppler spectrograms are compared using different target range bin optimum target range bin selection methods. To determine the effectiveness of the proposed algorithm in fall recognition, a MobileNetV3-Small architecture is implemented for fall detection by automatically extracting features and classifying them. The proposed method distinguishes falls from non-falls with a 98.93% classification accuracy with 5-fold cross validation, which is superior to the existing maximum variance method that is applied to the dataset using three kinds of time Doppler spectrograms. The test results in another scene show that our proposed method is robust enough to detect falls successfully for unseen subjects in unseen situations. The proposed optimum target range bin selection method can effectively and robustly detect falls when using wideband radar and a lightweight network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助WZH采纳,获得10
1秒前
NexusExplorer应助木木采纳,获得10
1秒前
LDX完成签到,获得积分10
1秒前
4秒前
4秒前
6秒前
科研狂徒完成签到,获得积分10
8秒前
123by完成签到,获得积分10
8秒前
LK完成签到,获得积分10
9秒前
隐形曼青应助1459采纳,获得10
9秒前
Melrose完成签到,获得积分10
11秒前
烟花应助不安的橘子采纳,获得10
12秒前
田田田田发布了新的文献求助10
13秒前
13秒前
吴大宝完成签到,获得积分10
13秒前
小二郎应助hehe采纳,获得10
13秒前
14秒前
玛瑙关注了科研通微信公众号
14秒前
Wenfeifei完成签到,获得积分10
14秒前
华康发布了新的文献求助10
16秒前
17秒前
薛定谔的猫完成签到,获得积分10
17秒前
17秒前
kelly完成签到,获得积分10
18秒前
尔东应助Ayo采纳,获得10
19秒前
煮饭吃Zz发布了新的文献求助10
19秒前
19秒前
SciGPT应助Wenfeifei采纳,获得30
19秒前
清爽太阳发布了新的文献求助10
20秒前
99咳血做科研完成签到,获得积分10
21秒前
21秒前
完美的翼发布了新的文献求助30
22秒前
做梦完成签到,获得积分10
23秒前
迷你的含羞草完成签到,获得积分10
23秒前
23秒前
杀出个黎明举报daiyu求助涉嫌违规
24秒前
24秒前
还不错发布了新的文献求助10
24秒前
25秒前
小蘑菇应助华康采纳,获得10
26秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159909
求助须知:如何正确求助?哪些是违规求助? 2810952
关于积分的说明 7890034
捐赠科研通 2469969
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630771
版权声明 602012