Detection of ankle fractures using deep learning algorithms

医学 脚踝 射线照相术 卷积神经网络 人工智能 深度学习 算法 放射科 口腔正畸科 外科 计算机科学
作者
Soheil Ashkani‐Esfahani,Reza Mojahed Yazdi,Rohan Bhimani,Gino M. M. J. Kerkhoffs,Mario Maas,Christopher W. DiGiovanni,Bart Lubberts,Daniel Guss
出处
期刊:Foot and Ankle Surgery [Elsevier]
卷期号:28 (8): 1259-1265 被引量:26
标识
DOI:10.1016/j.fas.2022.05.005
摘要

Early and accurate detection of ankle fractures are crucial for optimizing treatment and thus reducing future complications. Radiographs are the most abundant imaging techniques for assessing fractures. Deep learning (DL) methods, through adequately trained deep convolutional neural networks (DCNNs), have been previously shown to faster and accurately analyze radiographic images without human intervention. Herein, we aimed to assess the performance of two different DCNNs in detecting ankle fractures using radiographs compared to the ground truth.In this retrospective case-control study, our DCNNs were trained using radiographs obtained from 1050 patients with ankle fracture and the same number of individuals with otherwise healthy ankles. Inception V3 and Renet-50 pretrained models were used in our algorithms. Danis-Weber classification method was used. Out of 1050, 72 individuals were labeled as occult fractures as they were not detected in the primary radiographic assessment. Single-view (anteroposterior) radiographs was compared with 3-views (anteroposterior, mortise, lateral) for training the DCNNs.Our DCNNs showed a better performance using 3-views images versus single-view based on greater values for accuracy, F-score, and area under the curve (AUC). The highest sensitivity was 98.7 % and specificity was 98.6 % in detection of ankle fractures using 3-views using inception V3. This model missed only one fracture on radiographs.The performance of our DCNNs showed that it can be used for developing the currently used image interpretation programs or as a separate assistant solution for the clinicians to detect ankle fractures faster and more precisely.III.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
程瀚砚完成签到,获得积分10
刚刚
wjfan完成签到,获得积分10
1秒前
attilio发布了新的文献求助30
1秒前
wangsai完成签到,获得积分10
2秒前
2秒前
卡夫卡的熊完成签到,获得积分10
3秒前
阜睿发布了新的文献求助20
3秒前
hhhyyyy发布了新的文献求助10
3秒前
wangzh完成签到,获得积分10
4秒前
zou完成签到 ,获得积分10
6秒前
852应助1234采纳,获得10
6秒前
7秒前
wangzh发布了新的文献求助30
8秒前
木林森林木完成签到 ,获得积分10
9秒前
动听的灵槐完成签到,获得积分10
9秒前
RLL完成签到,获得积分10
10秒前
文艺的棒球完成签到,获得积分10
10秒前
chenaio发布了新的文献求助10
10秒前
愤怒的超级兵完成签到,获得积分10
11秒前
无情亦凝完成签到,获得积分10
11秒前
李健的粉丝团团长应助TT采纳,获得10
11秒前
123发布了新的文献求助10
12秒前
Starry完成签到,获得积分10
12秒前
14秒前
白河完成签到,获得积分10
14秒前
互助遵法尚德应助马二朵采纳,获得10
16秒前
16秒前
阿七完成签到,获得积分10
18秒前
李健应助井一采纳,获得10
19秒前
20秒前
1234发布了新的文献求助10
20秒前
20秒前
一叶扁舟发布了新的文献求助10
21秒前
24秒前
25秒前
小夏发布了新的文献求助10
25秒前
桂馥兰馨完成签到 ,获得积分10
25秒前
白河发布了新的文献求助10
26秒前
李健应助lll采纳,获得10
28秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159900
求助须知:如何正确求助?哪些是违规求助? 2810945
关于积分的说明 7889920
捐赠科研通 2469918
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630768
版权声明 602012