Detection of ankle fractures using deep learning algorithms

医学 脚踝 射线照相术 卷积神经网络 人工智能 深度学习 算法 放射科 口腔正畸科 外科 计算机科学
作者
Soheil Ashkani‐Esfahani,Reza Mojahed Yazdi,Rohan Bhimani,Gino M. M. J. Kerkhoffs,Mario Maas,Christopher W. DiGiovanni,Bart Lubberts,Daniel Guss
出处
期刊:Foot and Ankle Surgery [Elsevier BV]
卷期号:28 (8): 1259-1265 被引量:40
标识
DOI:10.1016/j.fas.2022.05.005
摘要

Early and accurate detection of ankle fractures are crucial for optimizing treatment and thus reducing future complications. Radiographs are the most abundant imaging techniques for assessing fractures. Deep learning (DL) methods, through adequately trained deep convolutional neural networks (DCNNs), have been previously shown to faster and accurately analyze radiographic images without human intervention. Herein, we aimed to assess the performance of two different DCNNs in detecting ankle fractures using radiographs compared to the ground truth.In this retrospective case-control study, our DCNNs were trained using radiographs obtained from 1050 patients with ankle fracture and the same number of individuals with otherwise healthy ankles. Inception V3 and Renet-50 pretrained models were used in our algorithms. Danis-Weber classification method was used. Out of 1050, 72 individuals were labeled as occult fractures as they were not detected in the primary radiographic assessment. Single-view (anteroposterior) radiographs was compared with 3-views (anteroposterior, mortise, lateral) for training the DCNNs.Our DCNNs showed a better performance using 3-views images versus single-view based on greater values for accuracy, F-score, and area under the curve (AUC). The highest sensitivity was 98.7 % and specificity was 98.6 % in detection of ankle fractures using 3-views using inception V3. This model missed only one fracture on radiographs.The performance of our DCNNs showed that it can be used for developing the currently used image interpretation programs or as a separate assistant solution for the clinicians to detect ankle fractures faster and more precisely.III.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
SherlockJia发布了新的文献求助10
2秒前
2秒前
纯真保温杯完成签到 ,获得积分10
3秒前
善良梦竹完成签到 ,获得积分10
3秒前
ehsl完成签到,获得积分10
3秒前
LC2228发布了新的文献求助10
3秒前
5秒前
细心的逍遥完成签到,获得积分10
5秒前
doctor葱完成签到,获得积分10
5秒前
可爱的安萱完成签到,获得积分10
5秒前
5秒前
非言墨语完成签到,获得积分10
5秒前
慕青应助malele采纳,获得10
6秒前
小马甲应助锅包肉采纳,获得10
6秒前
6秒前
静jj发布了新的文献求助10
7秒前
chuhuibaba完成签到,获得积分20
7秒前
千空完成签到,获得积分10
7秒前
8秒前
5123发布了新的文献求助10
8秒前
令狐晓博完成签到,获得积分0
8秒前
haki完成签到,获得积分10
9秒前
9秒前
重要问筠完成签到,获得积分10
9秒前
AronHUANG完成签到,获得积分10
9秒前
for_abSCI完成签到,获得积分10
10秒前
健壮的凝冬完成签到 ,获得积分10
10秒前
11秒前
香蕉觅云应助拌拌采纳,获得10
11秒前
Ding应助维时采纳,获得10
11秒前
千空发布了新的文献求助10
12秒前
怕孤单的若颜完成签到,获得积分10
12秒前
12秒前
13秒前
15297657686完成签到,获得积分10
13秒前
Max完成签到,获得积分10
14秒前
SherlockJia完成签到,获得积分10
14秒前
callmecjh完成签到,获得积分10
15秒前
5123完成签到,获得积分10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015970
求助须知:如何正确求助?哪些是违规求助? 3555964
关于积分的说明 11319479
捐赠科研通 3289040
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044