Water oxidation sites located at the interface of Pt/SrTiO3 for photocatalytic overall water splitting

光催化 分解水 过电位 半导体 催化作用 氧气 带材弯曲 光催化分解水 材料科学 电子顺磁共振 化学 光化学 物理化学 光电子学 电化学 核磁共振 生物化学 有机化学 电极 物理
作者
Xianwen Zhang,Zheng Li,Taifeng Liu,Mingrun Li,Chaobin Zeng,Hiroaki Matsumoto,Hongxian Han
出处
期刊:Chinese Journal of Catalysis [China Science Publishing & Media Ltd.]
卷期号:43 (8): 2223-2230 被引量:41
标识
DOI:10.1016/s1872-2067(21)64048-2
摘要

When a proton reduction cocatalyst is loaded on an n-type semiconductor for photocatalytic overall water splitting (POWS), the location of water oxidation sites is generally considered at the surface of the semiconductor due to upward band-bending of n-type semiconductor which may ease the transfer of the photogenerated holes to the surface. However, this is not the case for Pt/SrTiO3, a model semiconductor based photocatalyst for POWS. It was found that the photogenerated holes are more readily accumulated at the interface between Pt cocatalyst and SrTiO3 photocatalyst as probed by photo-oxidative deposition of PbO2, indicating that the water oxidation sites are located at the interface between Pt and SrTiO3. Electron paramagnetic resonance and scanning transmission electron microscope studies suggest that the interfacial oxygen atoms between Pt and SrTiO3 in Pt/SrTiO3 after POWS are more readily lost to form oxygen vacancies upon vacuum heat treatment, regardless of Pt loading by photodeposition or impregnation methods, which may serve as additional support for the location of the active sites for water oxidation at the interface. Density functional theory calculations also suggest that the oxygen evolution reaction more readily occurs at the interfacial sites with the lowest overpotential. These experimental and theoretical studies reveal that the more active sites for water oxidation are located at the interface between Pt and SrTiO3, rather than on the surface of SrTiO3. Hence, the tailor design and control of the interfacial properties are extremely important for the achievement or improvement of the POWS on cocatalyst loaded semiconductor photocatalyst.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhaobo完成签到,获得积分20
刚刚
刚刚
刚刚
无奈的小懒虫完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
Shuy完成签到,获得积分10
3秒前
可爱的函函应助wad采纳,获得10
3秒前
鹅蛋完成签到,获得积分10
3秒前
wonder123发布了新的文献求助10
3秒前
suntee发布了新的文献求助10
4秒前
传奇3应助怕黑思山采纳,获得10
4秒前
4秒前
happy_07完成签到,获得积分10
4秒前
hhc发布了新的文献求助10
4秒前
Polaris完成签到,获得积分10
4秒前
5秒前
yy发布了新的文献求助10
5秒前
5秒前
JD完成签到,获得积分20
5秒前
徐进发布了新的文献求助10
5秒前
5秒前
清醒发布了新的文献求助10
5秒前
woshizy完成签到,获得积分10
7秒前
7秒前
8秒前
大模型应助喵啊呜小可爱采纳,获得10
8秒前
xjc发布了新的文献求助10
9秒前
热心幻天发布了新的文献求助10
9秒前
9秒前
好好学习完成签到,获得积分10
10秒前
11秒前
苏11发布了新的文献求助10
11秒前
卷芽大王完成签到,获得积分10
12秒前
朵朵完成签到,获得积分10
14秒前
索大学术发布了新的文献求助10
14秒前
蟹治猿完成签到 ,获得积分10
14秒前
15秒前
16秒前
Skylar_Shao发布了新的文献求助10
16秒前
英俊的铭应助佳芸采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613276
求助须知:如何正确求助?哪些是违规求助? 4698456
关于积分的说明 14897966
捐赠科研通 4735724
什么是DOI,文献DOI怎么找? 2546946
邀请新用户注册赠送积分活动 1510961
关于科研通互助平台的介绍 1473537