RadBERT: Adapting Transformer-based Language Models to Radiology

自动汇总 自然语言处理 医学 人工智能 语言模型 变压器 编码(社会科学) 编码器 判决 放射科 计算机科学 统计 量子力学 电压 操作系统 物理 数学
作者
An Yan,Julian McAuley,Xing Lü,Jiang Du,Eric Chang,Amilcare Gentili,Chun‐Nan Hsu
出处
期刊:Radiology [Radiological Society of North America]
卷期号:4 (4) 被引量:68
标识
DOI:10.1148/ryai.210258
摘要

To investigate if tailoring a transformer-based language model to radiology is beneficial for radiology natural language processing (NLP) applications.This retrospective study presents a family of bidirectional encoder representations from transformers (BERT)-based language models adapted for radiology, named RadBERT. Transformers were pretrained with either 2.16 or 4.42 million radiology reports from U.S. Department of Veterans Affairs health care systems nationwide on top of four different initializations (BERT-base, Clinical-BERT, robustly optimized BERT pretraining approach [RoBERTa], and BioMed-RoBERTa) to create six variants of RadBERT. Each variant was fine-tuned for three representative NLP tasks in radiology: (a) abnormal sentence classification: models classified sentences in radiology reports as reporting abnormal or normal findings; (b) report coding: models assigned a diagnostic code to a given radiology report for five coding systems; and (c) report summarization: given the findings section of a radiology report, models selected key sentences that summarized the findings. Model performance was compared by bootstrap resampling with five intensively studied transformer language models as baselines: BERT-base, BioBERT, Clinical-BERT, BlueBERT, and BioMed-RoBERTa.For abnormal sentence classification, all models performed well (accuracies above 97.5 and F1 scores above 95.0). RadBERT variants achieved significantly higher scores than corresponding baselines when given only 10% or less of 12 458 annotated training sentences. For report coding, all variants outperformed baselines significantly for all five coding systems. The variant RadBERT-BioMed-RoBERTa performed the best among all models for report summarization, achieving a Recall-Oriented Understudy for Gisting Evaluation-1 score of 16.18 compared with 15.27 by the corresponding baseline (BioMed-RoBERTa, P < .004).Transformer-based language models tailored to radiology had improved performance of radiology NLP tasks compared with baseline transformer language models.Keywords: Translation, Unsupervised Learning, Transfer Learning, Neural Networks, Informatics Supplemental material is available for this article. © RSNA, 2022See also commentary by Wiggins and Tejani in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
阳光沛柔发布了新的文献求助10
2秒前
YYYZZX1完成签到,获得积分10
3秒前
英俊的铭应助Ljc采纳,获得10
3秒前
Rondab应助杜兰特工队采纳,获得30
4秒前
4秒前
4秒前
4秒前
隐形曼青应助yuanyuan采纳,获得10
4秒前
5秒前
nini发布了新的文献求助10
6秒前
思源应助zxunxia采纳,获得10
8秒前
8秒前
8秒前
8秒前
9秒前
量子星尘发布了新的文献求助30
9秒前
XYN1发布了新的文献求助10
9秒前
直立行走完成签到,获得积分10
9秒前
nini完成签到,获得积分10
11秒前
yuanyuan完成签到,获得积分20
12秒前
13秒前
13秒前
我晕豆芽发布了新的文献求助10
14秒前
15秒前
16秒前
沐风发布了新的文献求助10
16秒前
hh发布了新的文献求助10
17秒前
17秒前
Ljc完成签到,获得积分10
18秒前
昏睡的绿海完成签到,获得积分10
19秒前
20秒前
润泽发布了新的文献求助10
20秒前
21秒前
寻悦发布了新的文献求助10
23秒前
冷静的羿发布了新的文献求助10
23秒前
24秒前
24秒前
Ljc发布了新的文献求助10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988920
求助须知:如何正确求助?哪些是违规求助? 3531290
关于积分的说明 11253247
捐赠科研通 3269903
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882027
科研通“疑难数据库(出版商)”最低求助积分说明 809052