已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

RadBERT: Adapting Transformer-based Language Models to Radiology

自动汇总 自然语言处理 医学 人工智能 语言模型 变压器 编码(社会科学) 编码器 判决 放射科 计算机科学 统计 物理 电压 操作系统 量子力学 数学
作者
An Yan,Julian McAuley,Xing Lü,Jiang Du,Eric Chang,Amilcare Gentili,Chun‐Nan Hsu
出处
期刊:Radiology [Radiological Society of North America]
卷期号:4 (4) 被引量:68
标识
DOI:10.1148/ryai.210258
摘要

To investigate if tailoring a transformer-based language model to radiology is beneficial for radiology natural language processing (NLP) applications.This retrospective study presents a family of bidirectional encoder representations from transformers (BERT)-based language models adapted for radiology, named RadBERT. Transformers were pretrained with either 2.16 or 4.42 million radiology reports from U.S. Department of Veterans Affairs health care systems nationwide on top of four different initializations (BERT-base, Clinical-BERT, robustly optimized BERT pretraining approach [RoBERTa], and BioMed-RoBERTa) to create six variants of RadBERT. Each variant was fine-tuned for three representative NLP tasks in radiology: (a) abnormal sentence classification: models classified sentences in radiology reports as reporting abnormal or normal findings; (b) report coding: models assigned a diagnostic code to a given radiology report for five coding systems; and (c) report summarization: given the findings section of a radiology report, models selected key sentences that summarized the findings. Model performance was compared by bootstrap resampling with five intensively studied transformer language models as baselines: BERT-base, BioBERT, Clinical-BERT, BlueBERT, and BioMed-RoBERTa.For abnormal sentence classification, all models performed well (accuracies above 97.5 and F1 scores above 95.0). RadBERT variants achieved significantly higher scores than corresponding baselines when given only 10% or less of 12 458 annotated training sentences. For report coding, all variants outperformed baselines significantly for all five coding systems. The variant RadBERT-BioMed-RoBERTa performed the best among all models for report summarization, achieving a Recall-Oriented Understudy for Gisting Evaluation-1 score of 16.18 compared with 15.27 by the corresponding baseline (BioMed-RoBERTa, P < .004).Transformer-based language models tailored to radiology had improved performance of radiology NLP tasks compared with baseline transformer language models.Keywords: Translation, Unsupervised Learning, Transfer Learning, Neural Networks, Informatics Supplemental material is available for this article. © RSNA, 2022See also commentary by Wiggins and Tejani in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
利物浦996发布了新的文献求助10
4秒前
搜集达人应助炙热芯采纳,获得10
5秒前
5秒前
健壮慕梅完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
8秒前
利物浦996完成签到,获得积分10
9秒前
1234hai完成签到 ,获得积分10
9秒前
11秒前
风不定发布了新的文献求助10
13秒前
红星路吃饼子的派大星完成签到 ,获得积分10
13秒前
14秒前
15秒前
开朗的千雁完成签到 ,获得积分10
15秒前
Jiye完成签到 ,获得积分10
16秒前
16秒前
17秒前
落后乘风完成签到 ,获得积分10
18秒前
19秒前
毛益聪完成签到,获得积分10
20秒前
20秒前
奎奎完成签到 ,获得积分10
20秒前
Kiling完成签到,获得积分10
20秒前
碧蓝的之云完成签到 ,获得积分10
21秒前
无限铸海发布了新的文献求助10
21秒前
苻谷丝发布了新的文献求助10
21秒前
洋洋发布了新的文献求助10
22秒前
24秒前
24秒前
wanshang2340发布了新的文献求助10
25秒前
ding应助任小飞采纳,获得10
25秒前
文章发发发完成签到 ,获得积分10
26秒前
君子兰完成签到,获得积分10
26秒前
利物浦2024完成签到,获得积分10
27秒前
WQwsrf发布了新的文献求助10
29秒前
Hector发布了新的文献求助10
30秒前
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407434
求助须知:如何正确求助?哪些是违规求助? 4525015
关于积分的说明 14100656
捐赠科研通 4438741
什么是DOI,文献DOI怎么找? 2436477
邀请新用户注册赠送积分活动 1428463
关于科研通互助平台的介绍 1406482