亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RadBERT: Adapting Transformer-based Language Models to Radiology

自动汇总 自然语言处理 医学 人工智能 语言模型 变压器 编码(社会科学) 编码器 判决 放射科 计算机科学 统计 物理 电压 操作系统 量子力学 数学
作者
An Yan,Julian McAuley,Xing Lü,Jiang Du,Eric Chang,Amilcare Gentili,Chun‐Nan Hsu
出处
期刊:Radiology [Radiological Society of North America]
卷期号:4 (4) 被引量:68
标识
DOI:10.1148/ryai.210258
摘要

To investigate if tailoring a transformer-based language model to radiology is beneficial for radiology natural language processing (NLP) applications.This retrospective study presents a family of bidirectional encoder representations from transformers (BERT)-based language models adapted for radiology, named RadBERT. Transformers were pretrained with either 2.16 or 4.42 million radiology reports from U.S. Department of Veterans Affairs health care systems nationwide on top of four different initializations (BERT-base, Clinical-BERT, robustly optimized BERT pretraining approach [RoBERTa], and BioMed-RoBERTa) to create six variants of RadBERT. Each variant was fine-tuned for three representative NLP tasks in radiology: (a) abnormal sentence classification: models classified sentences in radiology reports as reporting abnormal or normal findings; (b) report coding: models assigned a diagnostic code to a given radiology report for five coding systems; and (c) report summarization: given the findings section of a radiology report, models selected key sentences that summarized the findings. Model performance was compared by bootstrap resampling with five intensively studied transformer language models as baselines: BERT-base, BioBERT, Clinical-BERT, BlueBERT, and BioMed-RoBERTa.For abnormal sentence classification, all models performed well (accuracies above 97.5 and F1 scores above 95.0). RadBERT variants achieved significantly higher scores than corresponding baselines when given only 10% or less of 12 458 annotated training sentences. For report coding, all variants outperformed baselines significantly for all five coding systems. The variant RadBERT-BioMed-RoBERTa performed the best among all models for report summarization, achieving a Recall-Oriented Understudy for Gisting Evaluation-1 score of 16.18 compared with 15.27 by the corresponding baseline (BioMed-RoBERTa, P < .004).Transformer-based language models tailored to radiology had improved performance of radiology NLP tasks compared with baseline transformer language models.Keywords: Translation, Unsupervised Learning, Transfer Learning, Neural Networks, Informatics Supplemental material is available for this article. © RSNA, 2022See also commentary by Wiggins and Tejani in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
34秒前
Dash发布了新的文献求助10
42秒前
狂野的含烟完成签到 ,获得积分10
49秒前
糊涂的青烟完成签到 ,获得积分10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
56秒前
Dash发布了新的文献求助10
1分钟前
科研通AI6应助Dash采纳,获得10
1分钟前
2分钟前
搜集达人应助Dash采纳,获得10
2分钟前
Davidjin完成签到,获得积分10
2分钟前
直率的笑翠完成签到 ,获得积分10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
null完成签到,获得积分0
3分钟前
Dash发布了新的文献求助10
3分钟前
3分钟前
笨笨山芙完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
Dash发布了新的文献求助10
4分钟前
疑夕发布了新的文献求助10
4分钟前
4分钟前
JamesPei应助知性的长颈鹿采纳,获得10
4分钟前
Dash发布了新的文献求助10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
4分钟前
Dash发布了新的文献求助10
5分钟前
丁丁完成签到,获得积分10
5分钟前
5分钟前
丁丁发布了新的文献求助10
5分钟前
疑夕完成签到,获得积分10
5分钟前
Dash发布了新的文献求助10
5分钟前
星沐易发布了新的文献求助10
5分钟前
6分钟前
Dash发布了新的文献求助10
6分钟前
6分钟前
123发布了新的文献求助10
6分钟前
深情安青应助丁丁采纳,获得10
6分钟前
852应助里昂义务采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
台灣螢火蟲 500
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4541127
求助须知:如何正确求助?哪些是违规求助? 3974789
关于积分的说明 12310876
捐赠科研通 3642073
什么是DOI,文献DOI怎么找? 2005643
邀请新用户注册赠送积分活动 1041037
科研通“疑难数据库(出版商)”最低求助积分说明 930239