RadBERT: Adapting Transformer-based Language Models to Radiology

自动汇总 自然语言处理 医学 人工智能 语言模型 变压器 编码(社会科学) 编码器 判决 放射科 计算机科学 统计 物理 电压 操作系统 量子力学 数学
作者
An Yan,Julian McAuley,Xing Lü,Jiang Du,Eric Chang,Amilcare Gentili,Chun‐Nan Hsu
出处
期刊:Radiology [Radiological Society of North America]
卷期号:4 (4) 被引量:68
标识
DOI:10.1148/ryai.210258
摘要

To investigate if tailoring a transformer-based language model to radiology is beneficial for radiology natural language processing (NLP) applications.This retrospective study presents a family of bidirectional encoder representations from transformers (BERT)-based language models adapted for radiology, named RadBERT. Transformers were pretrained with either 2.16 or 4.42 million radiology reports from U.S. Department of Veterans Affairs health care systems nationwide on top of four different initializations (BERT-base, Clinical-BERT, robustly optimized BERT pretraining approach [RoBERTa], and BioMed-RoBERTa) to create six variants of RadBERT. Each variant was fine-tuned for three representative NLP tasks in radiology: (a) abnormal sentence classification: models classified sentences in radiology reports as reporting abnormal or normal findings; (b) report coding: models assigned a diagnostic code to a given radiology report for five coding systems; and (c) report summarization: given the findings section of a radiology report, models selected key sentences that summarized the findings. Model performance was compared by bootstrap resampling with five intensively studied transformer language models as baselines: BERT-base, BioBERT, Clinical-BERT, BlueBERT, and BioMed-RoBERTa.For abnormal sentence classification, all models performed well (accuracies above 97.5 and F1 scores above 95.0). RadBERT variants achieved significantly higher scores than corresponding baselines when given only 10% or less of 12 458 annotated training sentences. For report coding, all variants outperformed baselines significantly for all five coding systems. The variant RadBERT-BioMed-RoBERTa performed the best among all models for report summarization, achieving a Recall-Oriented Understudy for Gisting Evaluation-1 score of 16.18 compared with 15.27 by the corresponding baseline (BioMed-RoBERTa, P < .004).Transformer-based language models tailored to radiology had improved performance of radiology NLP tasks compared with baseline transformer language models.Keywords: Translation, Unsupervised Learning, Transfer Learning, Neural Networks, Informatics Supplemental material is available for this article. © RSNA, 2022See also commentary by Wiggins and Tejani in this issue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
Jared应助科研通管家采纳,获得10
刚刚
momo应助科研通管家采纳,获得10
刚刚
zgrmws应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
Jared应助科研通管家采纳,获得10
1秒前
1秒前
ding应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
Jared应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得30
1秒前
Jared应助科研通管家采纳,获得10
1秒前
Jared应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得20
1秒前
2秒前
momo应助科研通管家采纳,获得10
2秒前
嗒嗒完成签到,获得积分10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
Endless完成签到,获得积分10
2秒前
DONGmumu完成签到,获得积分10
3秒前
机智的阿振完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
板栗完成签到,获得积分10
5秒前
zzzz完成签到,获得积分10
5秒前
一团毛线完成签到,获得积分10
6秒前
jadexu完成签到,获得积分10
6秒前
6秒前
柳沧海完成签到,获得积分0
6秒前
botion发布了新的文献求助10
6秒前
石慧君完成签到 ,获得积分10
6秒前
Frankyu完成签到,获得积分10
6秒前
爱笑的山灵完成签到,获得积分10
6秒前
7秒前
李爱国应助黄石采纳,获得10
7秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585080
求助须知:如何正确求助?哪些是违规求助? 4668887
关于积分的说明 14772970
捐赠科研通 4616734
什么是DOI,文献DOI怎么找? 2530315
邀请新用户注册赠送积分活动 1499116
关于科研通互助平台的介绍 1467641