RadBERT: Adapting Transformer-based Language Models to Radiology

自动汇总 自然语言处理 医学 人工智能 语言模型 变压器 编码(社会科学) 编码器 判决 放射科 计算机科学 统计 量子力学 电压 操作系统 物理 数学
作者
An Yan,Julian McAuley,Xing Lü,Jiang Du,Eric Chang,Amilcare Gentili,Chun‐Nan Hsu
出处
期刊:Radiology [Radiological Society of North America]
卷期号:4 (4) 被引量:68
标识
DOI:10.1148/ryai.210258
摘要

To investigate if tailoring a transformer-based language model to radiology is beneficial for radiology natural language processing (NLP) applications.This retrospective study presents a family of bidirectional encoder representations from transformers (BERT)-based language models adapted for radiology, named RadBERT. Transformers were pretrained with either 2.16 or 4.42 million radiology reports from U.S. Department of Veterans Affairs health care systems nationwide on top of four different initializations (BERT-base, Clinical-BERT, robustly optimized BERT pretraining approach [RoBERTa], and BioMed-RoBERTa) to create six variants of RadBERT. Each variant was fine-tuned for three representative NLP tasks in radiology: (a) abnormal sentence classification: models classified sentences in radiology reports as reporting abnormal or normal findings; (b) report coding: models assigned a diagnostic code to a given radiology report for five coding systems; and (c) report summarization: given the findings section of a radiology report, models selected key sentences that summarized the findings. Model performance was compared by bootstrap resampling with five intensively studied transformer language models as baselines: BERT-base, BioBERT, Clinical-BERT, BlueBERT, and BioMed-RoBERTa.For abnormal sentence classification, all models performed well (accuracies above 97.5 and F1 scores above 95.0). RadBERT variants achieved significantly higher scores than corresponding baselines when given only 10% or less of 12 458 annotated training sentences. For report coding, all variants outperformed baselines significantly for all five coding systems. The variant RadBERT-BioMed-RoBERTa performed the best among all models for report summarization, achieving a Recall-Oriented Understudy for Gisting Evaluation-1 score of 16.18 compared with 15.27 by the corresponding baseline (BioMed-RoBERTa, P < .004).Transformer-based language models tailored to radiology had improved performance of radiology NLP tasks compared with baseline transformer language models.Keywords: Translation, Unsupervised Learning, Transfer Learning, Neural Networks, Informatics Supplemental material is available for this article. © RSNA, 2022See also commentary by Wiggins and Tejani in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tell06发布了新的文献求助30
刚刚
MHJ12306发布了新的文献求助10
刚刚
你好完成签到,获得积分10
1秒前
shawn完成签到,获得积分10
1秒前
星空发布了新的文献求助20
2秒前
在水一方应助超级月饼采纳,获得10
3秒前
合适不愁完成签到,获得积分10
3秒前
3秒前
zsj完成签到,获得积分0
5秒前
yuyuyu发布了新的文献求助30
5秒前
5秒前
温枳完成签到,获得积分10
5秒前
7秒前
傅晨玲完成签到,获得积分20
7秒前
元始天尊完成签到,获得积分10
7秒前
俊秀的电灯胆完成签到,获得积分10
8秒前
无私念瑶完成签到,获得积分10
8秒前
8秒前
9秒前
cocolu应助kalani采纳,获得10
9秒前
10秒前
10秒前
10秒前
SCQ应助佰斯特威采纳,获得10
10秒前
无私念瑶发布了新的文献求助10
11秒前
一颗西柚完成签到,获得积分10
11秒前
biubiu完成签到 ,获得积分10
11秒前
12秒前
nihaoya172发布了新的文献求助30
12秒前
12秒前
顺心季节完成签到,获得积分10
13秒前
赏光发布了新的文献求助10
14秒前
15秒前
称心枫发布了新的文献求助10
15秒前
Yankai发布了新的文献求助10
15秒前
???发布了新的文献求助10
16秒前
chen发布了新的文献求助10
16秒前
17秒前
爱情哈尔完成签到,获得积分10
17秒前
ocean发布了新的文献求助10
17秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3333164
求助须知:如何正确求助?哪些是违规求助? 2962515
关于积分的说明 8606337
捐赠科研通 2641549
什么是DOI,文献DOI怎么找? 1446111
科研通“疑难数据库(出版商)”最低求助积分说明 670001
邀请新用户注册赠送积分活动 658053