重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Untargeted metabolomic analysis of Chinese red wines for geographical origin traceability by UPLC-QTOF-MS coupled with chemometrics

葡萄酒 代谢组学 化学计量学 OPL公司 主成分分析 偏最小二乘回归 可追溯性 色谱法 线性判别分析 高效液相色谱法 化学 食品科学 数学 统计 分子 氢键 有机化学
作者
Yuan Pan,Hui‐Wen Gu,Yi Lv,Xiaoli Yin,Ying Chen,Wanjun Long,Haiyan Fu,Yuanbin She
出处
期刊:Food Chemistry [Elsevier]
卷期号:394: 133473-133473 被引量:71
标识
DOI:10.1016/j.foodchem.2022.133473
摘要

Identifying geographical origins of red wines made in specific regions is of significance since the false claim of geographical origins has been frequently exposed in China's wine industry. In this work, an untargeted metabolomic approach based on UPLC-QTOF-MS was established to discriminate geographical origins of Chinese red wines. The principal component analysis (PCA) showed significant differences between wine samples from three famous geographical origins in China. The metabolites contributing to the differentiation were screened by orthogonal partial least squares-discriminant analysis (OPLS-DA) with pairwise modeling. 40 and 46 differential metabolites in positive and negative ionization modes were putatively identified as chemical markers. Furthermore, heatmap visualization and OPLS-DA models were constructed based on these identified markers and external verification wine samples from different regions were successfully discriminated, with recognition rate up to 96.7%. This study indicated that UPLC-QTOF-MS-based untargeted metabolomics has great potential for the geographical origin traceability of Chinese red wines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1282941496完成签到,获得积分10
刚刚
blank完成签到,获得积分10
刚刚
WBTT发布了新的文献求助10
1秒前
cherish完成签到,获得积分10
1秒前
FashionBoy应助冷静白亦采纳,获得10
1秒前
1秒前
2秒前
桐桐应助Codd采纳,获得10
2秒前
2秒前
鱼是乎发布了新的文献求助10
2秒前
2秒前
成天睡大觉完成签到 ,获得积分20
2秒前
3秒前
3秒前
雪碧加冰完成签到,获得积分10
4秒前
4秒前
5秒前
HJJHJH发布了新的文献求助10
5秒前
5秒前
fawr完成签到 ,获得积分10
5秒前
6秒前
6秒前
6秒前
云栖完成签到,获得积分10
6秒前
7秒前
未若从前i发布了新的文献求助10
7秒前
7秒前
Hello应助无欲无求傻傻采纳,获得10
8秒前
8秒前
波利波利爱吃鱼完成签到,获得积分10
9秒前
翻翻CHEN完成签到,获得积分20
9秒前
9秒前
Leeyee发布了新的文献求助20
9秒前
zhenzhen完成签到,获得积分10
10秒前
aging00发布了新的文献求助10
10秒前
10秒前
淡淡的忧伤完成签到,获得积分10
10秒前
10秒前
10秒前
snowdream完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467299
求助须知:如何正确求助?哪些是违规求助? 4571085
关于积分的说明 14328325
捐赠科研通 4497634
什么是DOI,文献DOI怎么找? 2464057
邀请新用户注册赠送积分活动 1452861
关于科研通互助平台的介绍 1427654