Microstructure evolution and densification behavior of TiC/316L composite powders during cold/warm die compaction and solid-state sintering: 3D particulate scale numerical modelling and experimental validation

材料科学 烧结 压实 微观结构 复合数 复合材料 粉末冶金 晶粒生长 粒子(生态学) 变形(气象学) 冶金 压力(语言学) 语言学 海洋学 地质学 哲学
作者
Defeng Wang,Xiaohan Liu,Meng Li,Jiale Lv,Xizhong An,Quan Qian,Haitao Fu,Hao Zhang,Xiaohong Yang,Qingchuan Zou
出处
期刊:Advanced Powder Technology [Elsevier BV]
卷期号:33 (8): 103667-103667 被引量:3
标识
DOI:10.1016/j.apt.2022.103667
摘要

To identify the microstructure evolution and densification behavior of TiC/316L composites in powder metallurgy (PM) process, 3D particulate scale numerical simulations were conducted to reproduce the cold/warm compaction and solid-state sintering of TiC/316L composite powders with corresponding physical experiments being carried out for model validation. The effects of compaction parameters and sintering temperature on the densification behavior of TiC/316L composite powders were systemically investigated. The particle deformation and morphology, stress/strain and microstructure evolutions, and grain size distribution in the whole process were characterized and compared to further illustrate the densification behavior and the underlying dynamics/mechanisms. The results show that compared with the cold compaction, the warm compaction can not only achieve higher relative density, smaller and more uniform equivalent stress, and weaker spring back effect, but also improve the friction condition among powder particles. The plastic deformation of 316L particles is the main densification mechanism during compaction. In the solid-state sintering of TiC/316L compacts, the densification is mainly indicated by shrinkage and vanishing of large residual pores along with the growth of the sintering necks, accompanied by the particle movement and growth along the boundary regions. Meanwhile, the particle displacement and grain size distribution are more uniform in the warm compacted TiC/316L component. Moreover, the equivalent (von Mises) stress in 316L particles is smaller than that in TiC particles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
晴天完成签到,获得积分20
刚刚
1秒前
曹萍完成签到,获得积分20
1秒前
小马甲应助hush采纳,获得10
1秒前
2秒前
NexusExplorer应助liuguyue采纳,获得10
2秒前
小马甲应助蚝仔烙蚝仔采纳,获得10
2秒前
2秒前
所所应助T_KYG采纳,获得10
3秒前
3秒前
小羊完成签到,获得积分10
3秒前
4秒前
4秒前
呼大人发布了新的文献求助10
4秒前
蔡莹完成签到 ,获得积分10
5秒前
凌泉完成签到 ,获得积分10
5秒前
hush完成签到,获得积分10
6秒前
6秒前
ffliu发布了新的文献求助20
7秒前
jia发布了新的文献求助10
7秒前
nini发布了新的文献求助10
7秒前
薯片发布了新的文献求助10
7秒前
思源应助不如吃茶去采纳,获得10
9秒前
taotao发布了新的文献求助10
9秒前
LL关注了科研通微信公众号
10秒前
干净的马里奥完成签到,获得积分10
10秒前
CodeCraft应助化学喵采纳,获得10
10秒前
青橘短衫完成签到,获得积分10
11秒前
11秒前
共享精神应助胡图图233采纳,获得10
12秒前
科目三应助张泽芝采纳,获得10
13秒前
以光之名完成签到,获得积分10
13秒前
蛋堡发布了新的文献求助10
14秒前
14秒前
呼大人关注了科研通微信公众号
15秒前
oon完成签到,获得积分10
15秒前
depurge完成签到,获得积分10
15秒前
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4960247
求助须知:如何正确求助?哪些是违规求助? 4220767
关于积分的说明 13144216
捐赠科研通 4004605
什么是DOI,文献DOI怎么找? 2191552
邀请新用户注册赠送积分活动 1205753
关于科研通互助平台的介绍 1116915