Microstructure evolution and densification behavior of TiC/316L composite powders during cold/warm die compaction and solid-state sintering: 3D particulate scale numerical modelling and experimental validation

材料科学 烧结 压实 微观结构 复合数 复合材料 粉末冶金 晶粒生长 粒子(生态学) 变形(气象学) 冶金 压力(语言学) 语言学 海洋学 地质学 哲学
作者
Defeng Wang,Xiaohan Liu,Meng Li,Jiale Lv,Xizhong An,Quan Qian,Haitao Fu,Hao Zhang,Xiaohong Yang,Qingchuan Zou
出处
期刊:Advanced Powder Technology [Elsevier BV]
卷期号:33 (8): 103667-103667 被引量:3
标识
DOI:10.1016/j.apt.2022.103667
摘要

To identify the microstructure evolution and densification behavior of TiC/316L composites in powder metallurgy (PM) process, 3D particulate scale numerical simulations were conducted to reproduce the cold/warm compaction and solid-state sintering of TiC/316L composite powders with corresponding physical experiments being carried out for model validation. The effects of compaction parameters and sintering temperature on the densification behavior of TiC/316L composite powders were systemically investigated. The particle deformation and morphology, stress/strain and microstructure evolutions, and grain size distribution in the whole process were characterized and compared to further illustrate the densification behavior and the underlying dynamics/mechanisms. The results show that compared with the cold compaction, the warm compaction can not only achieve higher relative density, smaller and more uniform equivalent stress, and weaker spring back effect, but also improve the friction condition among powder particles. The plastic deformation of 316L particles is the main densification mechanism during compaction. In the solid-state sintering of TiC/316L compacts, the densification is mainly indicated by shrinkage and vanishing of large residual pores along with the growth of the sintering necks, accompanied by the particle movement and growth along the boundary regions. Meanwhile, the particle displacement and grain size distribution are more uniform in the warm compacted TiC/316L component. Moreover, the equivalent (von Mises) stress in 316L particles is smaller than that in TiC particles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助看我表演采纳,获得30
刚刚
可爱的函函应助夏了采纳,获得30
刚刚
joodeuk完成签到,获得积分10
2秒前
Xiaowen发布了新的文献求助10
2秒前
SciGPT应助LIU采纳,获得10
2秒前
2秒前
Owen应助马红梅采纳,获得10
3秒前
小北完成签到,获得积分20
3秒前
淡然冬灵发布了新的文献求助10
4秒前
完美世界应助tianwenxiaozi采纳,获得10
4秒前
轻吟发布了新的文献求助10
4秒前
坡坡大王完成签到,获得积分10
5秒前
夏xia完成签到 ,获得积分10
5秒前
丘比特应助看我表演采纳,获得10
6秒前
科研通AI5应助m123采纳,获得10
7秒前
章鱼发布了新的文献求助10
8秒前
8秒前
9秒前
机智的忆灵完成签到,获得积分10
9秒前
11秒前
半夏完成签到 ,获得积分10
11秒前
12秒前
情怀应助看我表演采纳,获得10
12秒前
炼丹师发布了新的文献求助20
12秒前
12秒前
科研通AI6应助Peng采纳,获得10
12秒前
13秒前
13秒前
LIU发布了新的文献求助10
14秒前
15秒前
15秒前
我爱读文献完成签到,获得积分10
15秒前
15秒前
CodeCraft应助章鱼采纳,获得10
17秒前
李明星发布了新的文献求助10
18秒前
刺猬皮55发布了新的文献求助10
18秒前
QWE发布了新的文献求助10
20秒前
艺2333完成签到,获得积分10
20秒前
留胡子的不尤完成签到,获得积分10
21秒前
小王同学发布了新的文献求助10
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5124448
求助须知:如何正确求助?哪些是违规求助? 4328721
关于积分的说明 13488255
捐赠科研通 4163099
什么是DOI,文献DOI怎么找? 2282182
邀请新用户注册赠送积分活动 1283377
关于科研通互助平台的介绍 1222607