Microstructure evolution and densification behavior of TiC/316L composite powders during cold/warm die compaction and solid-state sintering: 3D particulate scale numerical modelling and experimental validation

材料科学 烧结 压实 微观结构 复合数 复合材料 粉末冶金 晶粒生长 粒子(生态学) 变形(气象学) 冶金 压力(语言学) 语言学 海洋学 地质学 哲学
作者
Defeng Wang,Xiaohan Liu,Meng Li,Jiale Lv,Xizhong An,Quan Qian,Haitao Fu,Hao Zhang,Xiaohong Yang,Qingchuan Zou
出处
期刊:Advanced Powder Technology [Elsevier]
卷期号:33 (8): 103667-103667 被引量:3
标识
DOI:10.1016/j.apt.2022.103667
摘要

To identify the microstructure evolution and densification behavior of TiC/316L composites in powder metallurgy (PM) process, 3D particulate scale numerical simulations were conducted to reproduce the cold/warm compaction and solid-state sintering of TiC/316L composite powders with corresponding physical experiments being carried out for model validation. The effects of compaction parameters and sintering temperature on the densification behavior of TiC/316L composite powders were systemically investigated. The particle deformation and morphology, stress/strain and microstructure evolutions, and grain size distribution in the whole process were characterized and compared to further illustrate the densification behavior and the underlying dynamics/mechanisms. The results show that compared with the cold compaction, the warm compaction can not only achieve higher relative density, smaller and more uniform equivalent stress, and weaker spring back effect, but also improve the friction condition among powder particles. The plastic deformation of 316L particles is the main densification mechanism during compaction. In the solid-state sintering of TiC/316L compacts, the densification is mainly indicated by shrinkage and vanishing of large residual pores along with the growth of the sintering necks, accompanied by the particle movement and growth along the boundary regions. Meanwhile, the particle displacement and grain size distribution are more uniform in the warm compacted TiC/316L component. Moreover, the equivalent (von Mises) stress in 316L particles is smaller than that in TiC particles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助fdk839375548采纳,获得10
刚刚
Sene发布了新的文献求助10
刚刚
tingi发布了新的文献求助10
1秒前
不良人完成签到,获得积分10
1秒前
小古发布了新的文献求助10
1秒前
1秒前
1秒前
碧蓝帆布鞋完成签到,获得积分10
1秒前
所所应助自信的寒天采纳,获得10
2秒前
幸福的蜜粉完成签到,获得积分10
2秒前
1234发布了新的文献求助10
2秒前
晓风残月发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
黄龙完成签到,获得积分10
2秒前
传奇3应助YeMa采纳,获得10
2秒前
明理瑾瑜发布了新的文献求助10
3秒前
arui发布了新的文献求助10
3秒前
顾矜应助小嘿嘿采纳,获得10
5秒前
SamSimple完成签到,获得积分10
5秒前
英俊的铭应助稳重的若雁采纳,获得10
6秒前
给好评发布了新的文献求助10
6秒前
Lucas应助哲寒采纳,获得10
7秒前
圆锥香蕉举报白智妍求助涉嫌违规
7秒前
等等要上进应助艺玲采纳,获得10
7秒前
anni完成签到,获得积分10
8秒前
七分甜豆完成签到 ,获得积分10
8秒前
9秒前
科研小卡拉米完成签到,获得积分10
10秒前
打打应助布布爱吃炸鸡采纳,获得30
11秒前
arui完成签到,获得积分10
11秒前
Dan完成签到,获得积分10
11秒前
小杭76应助11oneelevenisme采纳,获得10
12秒前
12秒前
Sue完成签到,获得积分10
13秒前
fdk839375548发布了新的文献求助10
13秒前
14秒前
小青椒应助majuanwei采纳,获得50
15秒前
执着可仁完成签到 ,获得积分10
15秒前
16秒前
SciGPT应助阳光下的味道采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409994
求助须知:如何正确求助?哪些是违规求助? 4527505
关于积分的说明 14111164
捐赠科研通 4441880
什么是DOI,文献DOI怎么找? 2437744
邀请新用户注册赠送积分活动 1429674
关于科研通互助平台的介绍 1407750