Microstructure evolution and densification behavior of TiC/316L composite powders during cold/warm die compaction and solid-state sintering: 3D particulate scale numerical modelling and experimental validation

材料科学 烧结 压实 微观结构 复合数 复合材料 粉末冶金 晶粒生长 粒子(生态学) 变形(气象学) 冶金 压力(语言学) 语言学 海洋学 哲学 地质学
作者
Defeng Wang,Xiaohan Liu,Meng Li,Jiale Lv,Xizhong An,Quan Qian,Haitao Fu,Hao Zhang,Xiaohong Yang,Qingchuan Zou
出处
期刊:Advanced Powder Technology [Elsevier]
卷期号:33 (8): 103667-103667 被引量:3
标识
DOI:10.1016/j.apt.2022.103667
摘要

To identify the microstructure evolution and densification behavior of TiC/316L composites in powder metallurgy (PM) process, 3D particulate scale numerical simulations were conducted to reproduce the cold/warm compaction and solid-state sintering of TiC/316L composite powders with corresponding physical experiments being carried out for model validation. The effects of compaction parameters and sintering temperature on the densification behavior of TiC/316L composite powders were systemically investigated. The particle deformation and morphology, stress/strain and microstructure evolutions, and grain size distribution in the whole process were characterized and compared to further illustrate the densification behavior and the underlying dynamics/mechanisms. The results show that compared with the cold compaction, the warm compaction can not only achieve higher relative density, smaller and more uniform equivalent stress, and weaker spring back effect, but also improve the friction condition among powder particles. The plastic deformation of 316L particles is the main densification mechanism during compaction. In the solid-state sintering of TiC/316L compacts, the densification is mainly indicated by shrinkage and vanishing of large residual pores along with the growth of the sintering necks, accompanied by the particle movement and growth along the boundary regions. Meanwhile, the particle displacement and grain size distribution are more uniform in the warm compacted TiC/316L component. Moreover, the equivalent (von Mises) stress in 316L particles is smaller than that in TiC particles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡国伟完成签到,获得积分10
刚刚
1秒前
1秒前
Youdge完成签到,获得积分10
3秒前
3秒前
4秒前
打工肥仔完成签到,获得积分0
4秒前
4秒前
5秒前
5秒前
libiqing77完成签到,获得积分10
5秒前
KingYugene发布了新的文献求助10
6秒前
直率的无极完成签到,获得积分10
6秒前
海光完成签到,获得积分10
6秒前
sarah完成签到,获得积分10
6秒前
夏沫完成签到,获得积分10
6秒前
科研顺发布了新的文献求助10
6秒前
Watson完成签到,获得积分10
7秒前
17871635733完成签到,获得积分10
8秒前
qq小兵发布了新的文献求助10
8秒前
耍酷的白梦完成签到,获得积分10
9秒前
狼主完成签到 ,获得积分10
9秒前
10秒前
电闪完成签到,获得积分10
10秒前
霸气的断缘完成签到,获得积分10
10秒前
共享精神应助kailash采纳,获得10
10秒前
wewewew完成签到,获得积分20
11秒前
可可完成签到,获得积分10
11秒前
goodsheep完成签到 ,获得积分10
11秒前
11秒前
Ysheng完成签到,获得积分10
11秒前
星河发布了新的文献求助10
11秒前
12秒前
大牙完成签到,获得积分10
13秒前
虚幻的以蓝完成签到,获得积分10
13秒前
wewewew发布了新的文献求助10
13秒前
微笑念薇完成签到,获得积分10
13秒前
JJ完成签到,获得积分10
13秒前
乐乐应助zz采纳,获得10
13秒前
14秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3081744
求助须知:如何正确求助?哪些是违规求助? 2734831
关于积分的说明 7534536
捐赠科研通 2384276
什么是DOI,文献DOI怎么找? 1264252
科研通“疑难数据库(出版商)”最低求助积分说明 612606
版权声明 597600