Autophagy is a self-degradation process in cells, which is of vital significance to the health and operation of organisms. Due to the increase of lysosomal viscosity during autophagy, viscosity probes that specifically accumulate in lysosome are powerful tools for monitoring autophagy and investigating related diseases. However, there is still a lack of viscosity-sensitive ratiometric autophagy probes, which restricts the tracking of autophagy with high accuracy in complex physiological environment. Herein, a viscosity-responsive, lysosome targeted two-photon fluorescent probe Lyso-Vis was designed based on through bond energy transfer (TBET) mechanism. The TBET-based probe achieved the separation of two emission baselines, which greatly improved the resolution and reliability of sensing and imaging. Under 810 nm two-photon excitation, the emission intensity ratio of the red and green channel increased with a viscosity dependent manner. Lyso-Vis not only for the first time realized ratiometric sensing of lysosomal viscosity during autophagy process, but also visualized the association of autophagy with inflammation and stroke, and it was applied to explore the activation and inhibition of autophagy during stroke in mice.