A two‐stage data cleansing method for bridge global positioning system monitoring data based on bi‐direction long and short term memory anomaly identification and conditional generative adversarial networks data repair

异常检测 数据清理 数据挖掘 计算机科学 鉴定(生物学) 数据集 异常(物理) 离群值 全球定位系统 数据质量 动态数据 集合(抽象数据类型) 人工智能 工程类 植物 电信 凝聚态物理 生物 物理 运营管理 公制(单位) 程序设计语言
作者
Kang Yang,Youliang Ding,Huachen Jiang,Hanwei Zhao,Gan Luo
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:29 (9) 被引量:15
标识
DOI:10.1002/stc.2993
摘要

Data cleansing is an essential approach for improving data quality. Therefore, it is the key to avoiding the false alarm of the monitoring system due to the anomaly of the data itself. Data cleansing consists of two parts: anomaly identification and anomaly repair. However, current research on data cleansing has mainly focused on anomaly identification and lacks efficient data repair methods. The key to data repair lies in sensor correlation models based on mapping relationships between sensors. To obtain a good inter-sensor relationship model, it is first necessary to exclude anomalous data from the training data set used for modeling. Therefore, a two-stage data cleansing framework for collaborative multi-sensor repair is proposed. First, based on the analysis of anomalous features of GPS data, a bidirectional long- and short-term memory (Bi-LSTM) neural network model is adopted for data anomalies classification and localization. As a result, the data segment to be repaired is determined. Then, on the basis of all sensor data in the time range of the day before the target repair data segment, the data set for data repair is constructed by excluding the anomaly data segments in the data set with the help of the above anomaly identification results. Then, a conditional generation adversarial network (CGAN) is proposed to achieve data repair. Experimental validation shows that the two-stage data cleansing method of identification followed by repair can accurately identify and repair GPS anomalies. Finally, several factors affecting the repair effect are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
kugaidatou发布了新的文献求助10
2秒前
善良小笼包完成签到 ,获得积分20
2秒前
2秒前
共享精神应助猪猪hero采纳,获得10
2秒前
快乐滑板发布了新的文献求助10
4秒前
爱学习的小美完成签到 ,获得积分10
4秒前
merlideng发布了新的文献求助10
4秒前
4秒前
一颗小葡萄应助zzzzzzp采纳,获得10
6秒前
6秒前
大模型应助ninalee采纳,获得10
7秒前
羊蓝蓝蓝发布了新的文献求助10
8秒前
8秒前
LeuinPonsgi完成签到,获得积分10
8秒前
8秒前
9秒前
甜栗栗子应助jjgbmt采纳,获得30
9秒前
领导范儿应助小神采纳,获得10
9秒前
9秒前
酷波er应助MAY采纳,获得10
10秒前
腼腆的斓完成签到 ,获得积分10
10秒前
清新的绿海完成签到,获得积分10
10秒前
ele_yuki完成签到,获得积分10
10秒前
猪猪hero发布了新的文献求助10
11秒前
机灵君浩发布了新的文献求助10
11秒前
12秒前
坐标完成签到,获得积分10
12秒前
tt发布了新的文献求助30
12秒前
上官若男应助爱笑的冷风采纳,获得10
12秒前
bkagyin应助鲤鱼水壶采纳,获得10
13秒前
靓丽谷南发布了新的文献求助10
14秒前
神勇的萱萱完成签到,获得积分10
14秒前
猪猪hero发布了新的文献求助10
15秒前
16秒前
丁力伟完成签到 ,获得积分10
16秒前
Asoqiang发布了新的文献求助10
16秒前
17秒前
超级冷松完成签到 ,获得积分10
17秒前
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951249
求助须知:如何正确求助?哪些是违规求助? 3496668
关于积分的说明 11083529
捐赠科研通 3227087
什么是DOI,文献DOI怎么找? 1784228
邀请新用户注册赠送积分活动 868269
科研通“疑难数据库(出版商)”最低求助积分说明 801095