A two‐stage data cleansing method for bridge global positioning system monitoring data based on bi‐direction long and short term memory anomaly identification and conditional generative adversarial networks data repair

异常检测 数据清理 数据挖掘 计算机科学 鉴定(生物学) 数据集 异常(物理) 离群值 全球定位系统 数据质量 动态数据 集合(抽象数据类型) 人工智能 工程类 公制(单位) 运营管理 植物 物理 生物 凝聚态物理 电信 程序设计语言
作者
Kang Yang,Youliang Ding,Huachen Jiang,Hanwei Zhao,Gan Luo
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:29 (9) 被引量:12
标识
DOI:10.1002/stc.2993
摘要

Data cleansing is an essential approach for improving data quality. Therefore, it is the key to avoiding the false alarm of the monitoring system due to the anomaly of the data itself. Data cleansing consists of two parts: anomaly identification and anomaly repair. However, current research on data cleansing has mainly focused on anomaly identification and lacks efficient data repair methods. The key to data repair lies in sensor correlation models based on mapping relationships between sensors. To obtain a good inter-sensor relationship model, it is first necessary to exclude anomalous data from the training data set used for modeling. Therefore, a two-stage data cleansing framework for collaborative multi-sensor repair is proposed. First, based on the analysis of anomalous features of GPS data, a bidirectional long- and short-term memory (Bi-LSTM) neural network model is adopted for data anomalies classification and localization. As a result, the data segment to be repaired is determined. Then, on the basis of all sensor data in the time range of the day before the target repair data segment, the data set for data repair is constructed by excluding the anomaly data segments in the data set with the help of the above anomaly identification results. Then, a conditional generation adversarial network (CGAN) is proposed to achieve data repair. Experimental validation shows that the two-stage data cleansing method of identification followed by repair can accurately identify and repair GPS anomalies. Finally, several factors affecting the repair effect are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乔乔完成签到,获得积分10
刚刚
刚刚
BITDUCK发布了新的文献求助10
刚刚
邹小天发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
共享精神应助sam采纳,获得10
2秒前
zzz完成签到,获得积分10
2秒前
嗯哼应助小朋友采纳,获得20
2秒前
3秒前
小柴完成签到,获得积分10
4秒前
wanci应助xczhu采纳,获得10
4秒前
Jackson_Cheng发布了新的文献求助30
4秒前
8R60d8应助zhangjianzeng采纳,获得10
4秒前
Xiaoshen发布了新的文献求助10
4秒前
华仔应助丁言笑采纳,获得10
5秒前
英姑应助心灵美的山蝶采纳,获得10
5秒前
7秒前
无花果应助闪闪采纳,获得10
7秒前
唐政清完成签到,获得积分10
8秒前
妮儿发布了新的文献求助10
8秒前
qi完成签到,获得积分10
8秒前
myeffort发布了新的文献求助10
9秒前
linglingling发布了新的文献求助30
9秒前
9秒前
9秒前
9秒前
彭于晏应助123采纳,获得10
10秒前
灵巧白安发布了新的文献求助10
10秒前
jk发布了新的文献求助10
10秒前
10秒前
动人的秋发布了新的文献求助10
11秒前
传奇3应助sb采纳,获得10
11秒前
en发布了新的文献求助10
11秒前
Jackson_Cheng完成签到,获得积分10
12秒前
wzzz发布了新的文献求助10
12秒前
April完成签到,获得积分0
12秒前
企鹅QQ发布了新的文献求助30
12秒前
所所应助SSL采纳,获得10
13秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3054545
求助须知:如何正确求助?哪些是违规求助? 2711512
关于积分的说明 7426610
捐赠科研通 2356104
什么是DOI,文献DOI怎么找? 1247642
科研通“疑难数据库(出版商)”最低求助积分说明 606478
版权声明 596079