A two‐stage data cleansing method for bridge global positioning system monitoring data based on bi‐direction long and short term memory anomaly identification and conditional generative adversarial networks data repair

异常检测 数据清理 数据挖掘 计算机科学 鉴定(生物学) 数据集 异常(物理) 离群值 全球定位系统 数据质量 动态数据 集合(抽象数据类型) 人工智能 工程类 公制(单位) 运营管理 植物 物理 生物 凝聚态物理 电信 程序设计语言
作者
Kang Yang,Youliang Ding,Huachen Jiang,Hanwei Zhao,Gan Luo
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:29 (9) 被引量:12
标识
DOI:10.1002/stc.2993
摘要

Data cleansing is an essential approach for improving data quality. Therefore, it is the key to avoiding the false alarm of the monitoring system due to the anomaly of the data itself. Data cleansing consists of two parts: anomaly identification and anomaly repair. However, current research on data cleansing has mainly focused on anomaly identification and lacks efficient data repair methods. The key to data repair lies in sensor correlation models based on mapping relationships between sensors. To obtain a good inter-sensor relationship model, it is first necessary to exclude anomalous data from the training data set used for modeling. Therefore, a two-stage data cleansing framework for collaborative multi-sensor repair is proposed. First, based on the analysis of anomalous features of GPS data, a bidirectional long- and short-term memory (Bi-LSTM) neural network model is adopted for data anomalies classification and localization. As a result, the data segment to be repaired is determined. Then, on the basis of all sensor data in the time range of the day before the target repair data segment, the data set for data repair is constructed by excluding the anomaly data segments in the data set with the help of the above anomaly identification results. Then, a conditional generation adversarial network (CGAN) is proposed to achieve data repair. Experimental validation shows that the two-stage data cleansing method of identification followed by repair can accurately identify and repair GPS anomalies. Finally, several factors affecting the repair effect are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
开朗雨琴发布了新的文献求助10
刚刚
oceanao应助LIUYI采纳,获得10
刚刚
Murray发布了新的文献求助10
1秒前
2秒前
jmg03发布了新的文献求助10
3秒前
4秒前
ha发布了新的文献求助10
4秒前
6秒前
共享精神应助包容的砖头采纳,获得10
6秒前
8秒前
8秒前
ding应助zjq采纳,获得10
8秒前
A灰机完成签到,获得积分10
9秒前
9秒前
CipherSage应助asd采纳,获得10
9秒前
琳静完成签到,获得积分10
10秒前
zhang完成签到,获得积分10
11秒前
小新完成签到,获得积分10
11秒前
杨气罐发布了新的文献求助10
12秒前
13秒前
hulala发布了新的文献求助10
14秒前
石页耶耶耶完成签到,获得积分20
15秒前
wujingshuai完成签到,获得积分10
15秒前
15秒前
ws发布了新的文献求助10
15秒前
15秒前
善学以致用应助zai采纳,获得10
16秒前
彭于晏应助聪聪great采纳,获得10
16秒前
Owen应助热情的戾采纳,获得10
16秒前
若初拾光发布了新的文献求助10
17秒前
科目三应助耍酷含芙采纳,获得10
18秒前
科目三应助快乐的安珊采纳,获得10
18秒前
锌银12306发布了新的文献求助10
19秒前
20秒前
wanci应助你好采纳,获得10
20秒前
zjq完成签到,获得积分10
21秒前
21秒前
d董发布了新的文献求助10
21秒前
jmg03完成签到,获得积分10
22秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
花菁类近红外荧光染料的合成及光学性能研究 500
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161232
求助须知:如何正确求助?哪些是违规求助? 2812684
关于积分的说明 7895969
捐赠科研通 2471492
什么是DOI,文献DOI怎么找? 1316042
科研通“疑难数据库(出版商)”最低求助积分说明 631084
版权声明 602112